关于三部分图中3-液滴最大数目的蚂蚁算法

Q4 Engineering
Krzysztof Schiff
{"title":"关于三部分图中3-液滴最大数目的蚂蚁算法","authors":"Krzysztof Schiff","doi":"10.2478/candc-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract The problem of finding the maximum number of d-vertices cliques (d = 3) in d-partite graph (d = 3) when graph density q is lower than 1 is an important problem in combinatorial optimization and it is one of many NP-complete problems. For this problem a meta-heuristic algorithm has been developed, namely an ant colony optimization algorithm. In this paper a new development of this ant algorithm and experimental results are presented. The problem of finding the maximum number of 3-vertices cliques can be encountered in computer image analysis, computer vision applications, automation and robotic vision systems. The optimal solution of this problem boils down to finding a set of 3-vertices cliques in a 3-partite graph and this set should have cardinality as high as possible. The elaborated ant colony algorithm can be easily modified for d-dimensional problems, that is for finding the maximum number of d-vertices cliques in a d-partite graph.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"347 - 358"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ant algorithm for the maximum number of 3-cliques in 3-partite graphs\",\"authors\":\"Krzysztof Schiff\",\"doi\":\"10.2478/candc-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The problem of finding the maximum number of d-vertices cliques (d = 3) in d-partite graph (d = 3) when graph density q is lower than 1 is an important problem in combinatorial optimization and it is one of many NP-complete problems. For this problem a meta-heuristic algorithm has been developed, namely an ant colony optimization algorithm. In this paper a new development of this ant algorithm and experimental results are presented. The problem of finding the maximum number of 3-vertices cliques can be encountered in computer image analysis, computer vision applications, automation and robotic vision systems. The optimal solution of this problem boils down to finding a set of 3-vertices cliques in a 3-partite graph and this set should have cardinality as high as possible. The elaborated ant colony algorithm can be easily modified for d-dimensional problems, that is for finding the maximum number of d-vertices cliques in a d-partite graph.\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"50 1\",\"pages\":\"347 - 358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2021-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

当图密度q小于1时,求d部图(d = 3)中d顶点团(d = 3)的最大个数问题是组合优化中的一个重要问题,也是众多np完全问题之一。针对这一问题,提出了一种元启发式算法,即蚁群优化算法。本文介绍了蚁群算法的新进展和实验结果。在计算机图像分析、计算机视觉应用、自动化和机器人视觉系统中都会遇到寻找最大数量的3顶点团的问题。这个问题的最优解决方案归结为在一个3部图中找到一组3顶点的团,这个集合应该具有尽可能高的基数。详细的蚁群算法可以很容易地修改为d维问题,即在d部图中找到最大数量的d顶点团。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ant algorithm for the maximum number of 3-cliques in 3-partite graphs
Abstract The problem of finding the maximum number of d-vertices cliques (d = 3) in d-partite graph (d = 3) when graph density q is lower than 1 is an important problem in combinatorial optimization and it is one of many NP-complete problems. For this problem a meta-heuristic algorithm has been developed, namely an ant colony optimization algorithm. In this paper a new development of this ant algorithm and experimental results are presented. The problem of finding the maximum number of 3-vertices cliques can be encountered in computer image analysis, computer vision applications, automation and robotic vision systems. The optimal solution of this problem boils down to finding a set of 3-vertices cliques in a 3-partite graph and this set should have cardinality as high as possible. The elaborated ant colony algorithm can be easily modified for d-dimensional problems, that is for finding the maximum number of d-vertices cliques in a d-partite graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信