有界电荷空间上函数的性质

Pub Date : 2021-06-21 DOI:10.1515/agms-2022-0134
J. Keith
{"title":"有界电荷空间上函数的性质","authors":"J. Keith","doi":"10.1515/agms-2022-0134","DOIUrl":null,"url":null,"abstract":"Abstract A charge space (X, 𝒜, µ) is a generalisation of a measure space, consisting of a sample space X, a field of subsets 𝒜 and a finitely additive measure µ, also known as a charge. Properties a real-valued function on X may possess include T1-measurability and integrability. However, these properties are less well studied than their measure-theoretic counterparts. This paper describes new characterisations of T1-measurability and integrability for a bounded charge space (µ(X) < ∞). These characterisations are convenient for analytic purposes; for example, they facilitate simple proofs that T1-measurability is equivalent to conventional measurability and integrability is equivalent to Lebesgue integrability, if (X, 𝒜, µ) is a complete measure space. New characterisations of equality almost everywhere of two real-valued functions on a bounded charge space are provided. Necessary and sufficient conditions for the function space L1(X, 𝒜, µ) to be a Banach space are determined. Lastly, the concept of completion of a measure space is generalised for charge spaces, and it is shown that under certain conditions, completion of a charge space adds no new equivalence classes to the quotient space ℒp(X, 𝒜, µ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Properties of Functions on a Bounded Charge Space\",\"authors\":\"J. Keith\",\"doi\":\"10.1515/agms-2022-0134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A charge space (X, 𝒜, µ) is a generalisation of a measure space, consisting of a sample space X, a field of subsets 𝒜 and a finitely additive measure µ, also known as a charge. Properties a real-valued function on X may possess include T1-measurability and integrability. However, these properties are less well studied than their measure-theoretic counterparts. This paper describes new characterisations of T1-measurability and integrability for a bounded charge space (µ(X) < ∞). These characterisations are convenient for analytic purposes; for example, they facilitate simple proofs that T1-measurability is equivalent to conventional measurability and integrability is equivalent to Lebesgue integrability, if (X, 𝒜, µ) is a complete measure space. New characterisations of equality almost everywhere of two real-valued functions on a bounded charge space are provided. Necessary and sufficient conditions for the function space L1(X, 𝒜, µ) to be a Banach space are determined. Lastly, the concept of completion of a measure space is generalised for charge spaces, and it is shown that under certain conditions, completion of a charge space adds no new equivalence classes to the quotient space ℒp(X, 𝒜, µ).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要A电荷空间(X,𝒜, µ)是测度空间的推广,由样本空间X,子集的域组成𝒜 和有限加性测度µ,也称为电荷。X上的实值函数可能具有的性质包括T1可测性和可积性。然而,这些性质的研究不如它们的度量理论对应物深入。本文描述了有界电荷空间(µ(X)<∞)的T1可测性和可积性的新性质。这些特征便于分析;例如它们促进了T1可测性等价于常规可测性和可积性等价于Lebesgue可积性的简单证明,𝒜, µ)是一个完整的测度空间。给出了有界电荷空间上两个实值函数几乎处处相等的新性质。函数空间L1(X,𝒜, µ)是Banach空间。最后,对电荷空间推广了测度空间完备的概念,证明了在一定条件下,电荷空间完备不会给商空间增加新的等价类ℒp(X,𝒜, µ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Properties of Functions on a Bounded Charge Space
Abstract A charge space (X, 𝒜, µ) is a generalisation of a measure space, consisting of a sample space X, a field of subsets 𝒜 and a finitely additive measure µ, also known as a charge. Properties a real-valued function on X may possess include T1-measurability and integrability. However, these properties are less well studied than their measure-theoretic counterparts. This paper describes new characterisations of T1-measurability and integrability for a bounded charge space (µ(X) < ∞). These characterisations are convenient for analytic purposes; for example, they facilitate simple proofs that T1-measurability is equivalent to conventional measurability and integrability is equivalent to Lebesgue integrability, if (X, 𝒜, µ) is a complete measure space. New characterisations of equality almost everywhere of two real-valued functions on a bounded charge space are provided. Necessary and sufficient conditions for the function space L1(X, 𝒜, µ) to be a Banach space are determined. Lastly, the concept of completion of a measure space is generalised for charge spaces, and it is shown that under certain conditions, completion of a charge space adds no new equivalence classes to the quotient space ℒp(X, 𝒜, µ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信