GB2和偏态广义log-t分布在金融中的应用比较

IF 9.9 3区 经济学 Q1 ECONOMICS
Joshua D. Higbee , James B. McDonald
{"title":"GB2和偏态广义log-t分布在金融中的应用比较","authors":"Joshua D. Higbee ,&nbsp;James B. McDonald","doi":"10.1016/j.jeconom.2021.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Several families of statistical distributions have been used to model financial data. The four-parameter generalized beta of the second kind (GB2) and five-parameter skewed generalized t (SGT) have been fit to return and log-return data, respectively. We introduce the skewed generalized log-t (SGLT) distribution and note that the GB2 and SGLT share such distributions as the asymmetric log-Laplace (ALL), log-Laplace (LL), and log-normal (LN). We then compare the relative performance of the GB2 and SGLT in modeling the distribution of daily, weekly, and monthly stock return data. We find that the GB2 and SGLT perform similarly and that the three-parameter log-t (LT) distribution is quite robust.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105064"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of the GB2 and skewed generalized log-t distributions with an application in finance\",\"authors\":\"Joshua D. Higbee ,&nbsp;James B. McDonald\",\"doi\":\"10.1016/j.jeconom.2021.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several families of statistical distributions have been used to model financial data. The four-parameter generalized beta of the second kind (GB2) and five-parameter skewed generalized t (SGT) have been fit to return and log-return data, respectively. We introduce the skewed generalized log-t (SGLT) distribution and note that the GB2 and SGLT share such distributions as the asymmetric log-Laplace (ALL), log-Laplace (LL), and log-normal (LN). We then compare the relative performance of the GB2 and SGLT in modeling the distribution of daily, weekly, and monthly stock return data. We find that the GB2 and SGLT perform similarly and that the three-parameter log-t (LT) distribution is quite robust.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"240 2\",\"pages\":\"Article 105064\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407621000154\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407621000154","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

有多个统计分布系列被用于建立金融数据模型。四参数第二类广义贝塔分布(GB2)和五参数偏斜广义对数 t 分布(SGT)已分别用于拟合收益率和对数收益率数据。我们介绍了偏斜广义对数 t(SGLT)分布,并指出 GB2 和 SGLT 与非对称对数拉普拉斯(ALL)、对数拉普拉斯(LL)和对数正态(LN)等分布相同。然后,我们比较了 GB2 和 SGLT 在模拟日、周和月股票收益率数据分布时的相对表现。我们发现,GB2 和 SGLT 的表现类似,而三参数 log-t (LT) 分布则相当稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of the GB2 and skewed generalized log-t distributions with an application in finance

Several families of statistical distributions have been used to model financial data. The four-parameter generalized beta of the second kind (GB2) and five-parameter skewed generalized t (SGT) have been fit to return and log-return data, respectively. We introduce the skewed generalized log-t (SGLT) distribution and note that the GB2 and SGLT share such distributions as the asymmetric log-Laplace (ALL), log-Laplace (LL), and log-normal (LN). We then compare the relative performance of the GB2 and SGLT in modeling the distribution of daily, weekly, and monthly stock return data. We find that the GB2 and SGLT perform similarly and that the three-parameter log-t (LT) distribution is quite robust.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信