基于尺度拉普拉斯变换反演的非参数密度估计

IF 0.3 Q4 MATHEMATICS
Fairouz Elmagbri, Robert M. Mnatsakanov
{"title":"基于尺度拉普拉斯变换反演的非参数密度估计","authors":"Fairouz Elmagbri,&nbsp;Robert M. Mnatsakanov","doi":"10.1016/j.trmi.2018.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>New nonparametric procedure for estimating the probability density function of a positive random variable is suggested. Asymptotic expressions of the bias term and Mean Squared Error are derived. By means of graphical illustrations and evaluating the Average of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-errors we conducted comparisons of the finite sample performance of proposed estimate with the one based on kernel density method.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 3","pages":"Pages 440-447"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.09.003","citationCount":"2","resultStr":"{\"title\":\"Nonparametric density estimation based on the scaled Laplace transform inversion\",\"authors\":\"Fairouz Elmagbri,&nbsp;Robert M. Mnatsakanov\",\"doi\":\"10.1016/j.trmi.2018.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New nonparametric procedure for estimating the probability density function of a positive random variable is suggested. Asymptotic expressions of the bias term and Mean Squared Error are derived. By means of graphical illustrations and evaluating the Average of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-errors we conducted comparisons of the finite sample performance of proposed estimate with the one based on kernel density method.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 3\",\"pages\":\"Pages 440-447\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.09.003\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809218300898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809218300898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的估计正随机变量概率密度函数的非参数方法。导出了偏置项和均方误差的渐近表达式。通过图解和l2误差平均值的评估,我们将所提出的有限样本估计与基于核密度法的估计进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric density estimation based on the scaled Laplace transform inversion

New nonparametric procedure for estimating the probability density function of a positive random variable is suggested. Asymptotic expressions of the bias term and Mean Squared Error are derived. By means of graphical illustrations and evaluating the Average of L2-errors we conducted comparisons of the finite sample performance of proposed estimate with the one based on kernel density method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信