基于BERT的电影评论自动分类系统

Q3 Computer Science
Shruti Jain, Shivani Rana, Rakesh Kanji
{"title":"基于BERT的电影评论自动分类系统","authors":"Shruti Jain, Shivani Rana, Rakesh Kanji","doi":"10.2174/2666255816666230507182018","DOIUrl":null,"url":null,"abstract":"\n\nText classification emerged as an important approach to advancing Natural Language Processing (NLP) applications concerning the available text on the web. To analyze the text, many applications are proposed in the literature.\n\n\n\nThe NLP, with the help of deep learning, has achieved great success in automatically sorting text data in predefined classes, but this process is expensive & time-consuming.\n\n\n\nTo overcome this problem, in this paper, various Machine Learning techniques are studied & implemented to generate an automated system for movie review classification.\n\n\n\nThe proposed methodology uses the Bidirectional Encoder Representations of the Transformer (BERT) model for data preparation and predictions using various machine learning algorithms like XG boost, support vector machine, logistic regression, naïve Bayes, and neural network. The algorithms are analyzed based on various performance metrics like accuracy, precision, recall & F1 score.\n\n\n\nThe results reveal that the 2-hidden layer neural network outperforms the other models by achieving more than 0.90 F1 score in the first 15 epochs and 0.99 in just 40 epochs on the IMDB dataset, thus reducing the time to a great extent.\n\n\n\n100% accuracy is attained using a neural network, resulting in a 15% accuracy improvement and 14.6% F1 score improvement over logistic regression.\n","PeriodicalId":36514,"journal":{"name":"Recent Advances in Computer Science and Communications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated System for Movie Review Classification using BERT\",\"authors\":\"Shruti Jain, Shivani Rana, Rakesh Kanji\",\"doi\":\"10.2174/2666255816666230507182018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nText classification emerged as an important approach to advancing Natural Language Processing (NLP) applications concerning the available text on the web. To analyze the text, many applications are proposed in the literature.\\n\\n\\n\\nThe NLP, with the help of deep learning, has achieved great success in automatically sorting text data in predefined classes, but this process is expensive & time-consuming.\\n\\n\\n\\nTo overcome this problem, in this paper, various Machine Learning techniques are studied & implemented to generate an automated system for movie review classification.\\n\\n\\n\\nThe proposed methodology uses the Bidirectional Encoder Representations of the Transformer (BERT) model for data preparation and predictions using various machine learning algorithms like XG boost, support vector machine, logistic regression, naïve Bayes, and neural network. The algorithms are analyzed based on various performance metrics like accuracy, precision, recall & F1 score.\\n\\n\\n\\nThe results reveal that the 2-hidden layer neural network outperforms the other models by achieving more than 0.90 F1 score in the first 15 epochs and 0.99 in just 40 epochs on the IMDB dataset, thus reducing the time to a great extent.\\n\\n\\n\\n100% accuracy is attained using a neural network, resulting in a 15% accuracy improvement and 14.6% F1 score improvement over logistic regression.\\n\",\"PeriodicalId\":36514,\"journal\":{\"name\":\"Recent Advances in Computer Science and Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Computer Science and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2666255816666230507182018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Computer Science and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2666255816666230507182018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

文本分类是推进自然语言处理(NLP)应用的一种重要方法,涉及网络上可用的文本。为了分析文本,文献中提出了许多应用。NLP在深度学习的帮助下,在将文本数据自动排序到预定义类中方面取得了巨大成功,但这一过程代价高昂且耗时。为了克服这一问题,本文研究并实现了各种机器学习技术,以生成一个电影评论自动分类系统。所提出的方法使用变压器的双向编码器表示(BERT)模型,使用各种机器学习算法(如XG-boost、支持向量机、逻辑回归、朴素贝叶斯和神经网络)进行数据准备和预测。算法基于各种性能指标进行分析,如准确性、精确度、召回率和F1分数。结果表明,在IMDB数据集上,2隐层神经网络在前15个时期内的F1得分超过0.90,在仅40个时期内达到0.99,从而在很大程度上缩短了时间。使用神经网络获得了100%的准确率,与逻辑回归相比,准确率提高了15%,F1得分提高了14.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated System for Movie Review Classification using BERT
Text classification emerged as an important approach to advancing Natural Language Processing (NLP) applications concerning the available text on the web. To analyze the text, many applications are proposed in the literature. The NLP, with the help of deep learning, has achieved great success in automatically sorting text data in predefined classes, but this process is expensive & time-consuming. To overcome this problem, in this paper, various Machine Learning techniques are studied & implemented to generate an automated system for movie review classification. The proposed methodology uses the Bidirectional Encoder Representations of the Transformer (BERT) model for data preparation and predictions using various machine learning algorithms like XG boost, support vector machine, logistic regression, naïve Bayes, and neural network. The algorithms are analyzed based on various performance metrics like accuracy, precision, recall & F1 score. The results reveal that the 2-hidden layer neural network outperforms the other models by achieving more than 0.90 F1 score in the first 15 epochs and 0.99 in just 40 epochs on the IMDB dataset, thus reducing the time to a great extent. 100% accuracy is attained using a neural network, resulting in a 15% accuracy improvement and 14.6% F1 score improvement over logistic regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Advances in Computer Science and Communications
Recent Advances in Computer Science and Communications Computer Science-Computer Science (all)
CiteScore
2.50
自引率
0.00%
发文量
142
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信