具有指数非线性的hsamnon型热方程解的存在性及爆破

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dong-sheng Gao, Jun Wang, Xuan Wang
{"title":"具有指数非线性的hsamnon型热方程解的存在性及爆破","authors":"Dong-sheng Gao, Jun Wang, Xuan Wang","doi":"10.1515/anona-2022-0290","DOIUrl":null,"url":null,"abstract":"Abstract In the present article, we are concerned with the following problem: v t = Δ v + ∣ x ∣ β e v , x ∈ R N , t > 0 , v ( x , 0 ) = v 0 ( x ) , x ∈ R N , \\left\\{\\phantom{\\rule[-1.25em]{}{0ex}}\\begin{array}{ll}{v}_{t}=\\Delta v+| x{| }^{\\beta }{e}^{v},\\hspace{1.0em}& x\\in {{\\mathbb{R}}}^{N},\\hspace{0.33em}t\\gt 0,\\\\ v\\left(x,0)={v}_{0}\\left(x),\\hspace{1.0em}& x\\in {{\\mathbb{R}}}^{N},\\end{array}\\right. where N ≥ 3 N\\ge 3 , 0 < β < 2 0\\lt \\beta \\lt 2 , and v 0 {v}_{0} is a continuous function in R N {{\\mathbb{R}}}^{N} . We prove the existence and asymptotic behavior of forward self-similar solutions in the case where v 0 {v}_{0} decays at the rate − ( 2 + β ) log ∣ x ∣ -\\left(2+\\beta )\\log | x| as ∣ x ∣ → ∞ | x| \\to \\infty . Particularly, we obtain the optimal decay bound for initial value v 0 {v}_{0} .","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and blow-up of solutions in Hénon-type heat equation with exponential nonlinearity\",\"authors\":\"Dong-sheng Gao, Jun Wang, Xuan Wang\",\"doi\":\"10.1515/anona-2022-0290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present article, we are concerned with the following problem: v t = Δ v + ∣ x ∣ β e v , x ∈ R N , t > 0 , v ( x , 0 ) = v 0 ( x ) , x ∈ R N , \\\\left\\\\{\\\\phantom{\\\\rule[-1.25em]{}{0ex}}\\\\begin{array}{ll}{v}_{t}=\\\\Delta v+| x{| }^{\\\\beta }{e}^{v},\\\\hspace{1.0em}& x\\\\in {{\\\\mathbb{R}}}^{N},\\\\hspace{0.33em}t\\\\gt 0,\\\\\\\\ v\\\\left(x,0)={v}_{0}\\\\left(x),\\\\hspace{1.0em}& x\\\\in {{\\\\mathbb{R}}}^{N},\\\\end{array}\\\\right. where N ≥ 3 N\\\\ge 3 , 0 < β < 2 0\\\\lt \\\\beta \\\\lt 2 , and v 0 {v}_{0} is a continuous function in R N {{\\\\mathbb{R}}}^{N} . We prove the existence and asymptotic behavior of forward self-similar solutions in the case where v 0 {v}_{0} decays at the rate − ( 2 + β ) log ∣ x ∣ -\\\\left(2+\\\\beta )\\\\log | x| as ∣ x ∣ → ∞ | x| \\\\to \\\\infty . Particularly, we obtain the optimal decay bound for initial value v 0 {v}_{0} .\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0290\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0290","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究以下问题:v t = Δ v +∣x∣β e v, x∈rn, t > 0, v (x, 0) = v 0 (x), x∈rn, \left {\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}{v}_{t}=\Delta v+| x{| }^{\beta }{e}^{v},\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\hspace{0.33em}t\gt 0,\\ v\left(x,0)={v}_{0}\left(x),\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right。其中N≥3n \ge 3, 0 < β < 20 \lt\beta\lt 2, {v0 }v_0{是R N中的连续函数}{{\mathbb{R}}} ^{N}。在v 0 {v_0}衰减速率为- (2+ β) log∣x∣- {}\left (2+ \beta) \log | x|为∣x∣→∞| x| \to\infty的情况下,证明了前向自相似解的存在性和渐近性。特别地,我们得到了初始值{v0 }v_0{的最优衰减界。}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and blow-up of solutions in Hénon-type heat equation with exponential nonlinearity
Abstract In the present article, we are concerned with the following problem: v t = Δ v + ∣ x ∣ β e v , x ∈ R N , t > 0 , v ( x , 0 ) = v 0 ( x ) , x ∈ R N , \left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}{v}_{t}=\Delta v+| x{| }^{\beta }{e}^{v},\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\hspace{0.33em}t\gt 0,\\ v\left(x,0)={v}_{0}\left(x),\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where N ≥ 3 N\ge 3 , 0 < β < 2 0\lt \beta \lt 2 , and v 0 {v}_{0} is a continuous function in R N {{\mathbb{R}}}^{N} . We prove the existence and asymptotic behavior of forward self-similar solutions in the case where v 0 {v}_{0} decays at the rate − ( 2 + β ) log ∣ x ∣ -\left(2+\beta )\log | x| as ∣ x ∣ → ∞ | x| \to \infty . Particularly, we obtain the optimal decay bound for initial value v 0 {v}_{0} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信