Nahla N. Hilal, T. A. Tawfik, H. H. Edan, Nadhim Hamah Sor
{"title":"部分含废塑料细骨料的可持续自密实混凝土的力学性能和耐久性","authors":"Nahla N. Hilal, T. A. Tawfik, H. H. Edan, Nadhim Hamah Sor","doi":"10.1080/14488353.2022.2083408","DOIUrl":null,"url":null,"abstract":"ABSTRACT Annually, the disposal of low-density polyethylene (LDP) and waste ceramics have increased, which have a negative impact on environmental pollution. Thus, construction material sustainability can be achieved through the use of these wastes in manufacturing concrete. This experimental investigation aimed to assess the behaviour of self-compacting concrete (SCC) incorporating LDP. A total of six concrete mixes were designed with various volume percentages of 0, 6, 12, 18, 24 and 30% of LDP as fine aggregate and used waste ceramic powder 30% (by weight) as partial substitution of cement for all mixtures. The experimental parameters are composed of fresh properties (fresh density, segregation analysis, H2/H1 ratio, slump flow diameter, V-funnel and T500 slump flow time) and hardened properties of dry density, ultrasonic pulse velocity, compressive and flexural strengths. However, the samples were exposed to elevated temperatures at 25 and 800°C for 3 h to examine dry density and compressive strength. The results showed that the dry density and compressive strength with 30% LDP were decreased by 4.9 and 37.17%, respectively, after being exposed to 800°C. From the compressive strength results, it was determined that all the mixes before and after exposure to elevated temperatures were suitable for structural purposes.","PeriodicalId":44354,"journal":{"name":"Australian Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The mechanical and durability behaviour of sustainable self-compacting concrete partially contained waste plastic as fine aggregate\",\"authors\":\"Nahla N. Hilal, T. A. Tawfik, H. H. Edan, Nadhim Hamah Sor\",\"doi\":\"10.1080/14488353.2022.2083408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Annually, the disposal of low-density polyethylene (LDP) and waste ceramics have increased, which have a negative impact on environmental pollution. Thus, construction material sustainability can be achieved through the use of these wastes in manufacturing concrete. This experimental investigation aimed to assess the behaviour of self-compacting concrete (SCC) incorporating LDP. A total of six concrete mixes were designed with various volume percentages of 0, 6, 12, 18, 24 and 30% of LDP as fine aggregate and used waste ceramic powder 30% (by weight) as partial substitution of cement for all mixtures. The experimental parameters are composed of fresh properties (fresh density, segregation analysis, H2/H1 ratio, slump flow diameter, V-funnel and T500 slump flow time) and hardened properties of dry density, ultrasonic pulse velocity, compressive and flexural strengths. However, the samples were exposed to elevated temperatures at 25 and 800°C for 3 h to examine dry density and compressive strength. The results showed that the dry density and compressive strength with 30% LDP were decreased by 4.9 and 37.17%, respectively, after being exposed to 800°C. From the compressive strength results, it was determined that all the mixes before and after exposure to elevated temperatures were suitable for structural purposes.\",\"PeriodicalId\":44354,\"journal\":{\"name\":\"Australian Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14488353.2022.2083408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14488353.2022.2083408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The mechanical and durability behaviour of sustainable self-compacting concrete partially contained waste plastic as fine aggregate
ABSTRACT Annually, the disposal of low-density polyethylene (LDP) and waste ceramics have increased, which have a negative impact on environmental pollution. Thus, construction material sustainability can be achieved through the use of these wastes in manufacturing concrete. This experimental investigation aimed to assess the behaviour of self-compacting concrete (SCC) incorporating LDP. A total of six concrete mixes were designed with various volume percentages of 0, 6, 12, 18, 24 and 30% of LDP as fine aggregate and used waste ceramic powder 30% (by weight) as partial substitution of cement for all mixtures. The experimental parameters are composed of fresh properties (fresh density, segregation analysis, H2/H1 ratio, slump flow diameter, V-funnel and T500 slump flow time) and hardened properties of dry density, ultrasonic pulse velocity, compressive and flexural strengths. However, the samples were exposed to elevated temperatures at 25 and 800°C for 3 h to examine dry density and compressive strength. The results showed that the dry density and compressive strength with 30% LDP were decreased by 4.9 and 37.17%, respectively, after being exposed to 800°C. From the compressive strength results, it was determined that all the mixes before and after exposure to elevated temperatures were suitable for structural purposes.