粘滞扩散的局部时间泛函收敛

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Alexis Anagnostakis
{"title":"粘滞扩散的局部时间泛函收敛","authors":"Alexis Anagnostakis","doi":"10.1214/23-ejp972","DOIUrl":null,"url":null,"abstract":"We prove the convergence of a class of high frequency path-functionals of a sticky diffusion to its local time. First, we prove this for the sticky Brownian motion. Then, we extend the result to sticky stochastic differential equations. We combine the local time approximation with an approximation of the occupation time to set up a consistent stickiness estimator. Last, we perform numerical experiments to assess the properties of the stickiness estimator and the local time approximation.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Functional convergence to the local time of a sticky diffusion\",\"authors\":\"Alexis Anagnostakis\",\"doi\":\"10.1214/23-ejp972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the convergence of a class of high frequency path-functionals of a sticky diffusion to its local time. First, we prove this for the sticky Brownian motion. Then, we extend the result to sticky stochastic differential equations. We combine the local time approximation with an approximation of the occupation time to set up a consistent stickiness estimator. Last, we perform numerical experiments to assess the properties of the stickiness estimator and the local time approximation.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp972\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp972","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

证明了一类粘性扩散的高频路径泛函对其局部时间的收敛性。首先,我们对粘性布朗运动证明了这一点。然后,我们将结果推广到粘随机微分方程。我们将局部时间近似与占用时间近似结合起来,建立了一个一致的粘性估计。最后,我们进行了数值实验来评估黏性估计器和局部时间近似的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional convergence to the local time of a sticky diffusion
We prove the convergence of a class of high frequency path-functionals of a sticky diffusion to its local time. First, we prove this for the sticky Brownian motion. Then, we extend the result to sticky stochastic differential equations. We combine the local time approximation with an approximation of the occupation time to set up a consistent stickiness estimator. Last, we perform numerical experiments to assess the properties of the stickiness estimator and the local time approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信