扩散界面多晶塑性:将晶界表示为几何上必要的位错

Nikhil Chandra Admal, Giacomo Po, Jaime Marian
{"title":"扩散界面多晶塑性:将晶界表示为几何上必要的位错","authors":"Nikhil Chandra Admal,&nbsp;Giacomo Po,&nbsp;Jaime Marian","doi":"10.1186/s41313-017-0006-0","DOIUrl":null,"url":null,"abstract":"<p>The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. <b><i>F</i></b>(<b><i>X,t</i></b>)=<b><i>F</i></b>\n <sup>L</sup>(<b><i>X,t</i></b>)<b><i>F</i></b>\n <sup>P</sup>(<b><i>X,t</i></b>), an initial stress-free polycrystal is constructed by imposing <b><i>F</i></b>\n <sup>L</sup> to be a piecewise constant rotation field <b><i>R</i></b>\n <sup>0</sup>(<b><i>X</i></b>), and <b><i>F</i></b>\n <sup>P</sup>=<b><i>R</i></b>\n <sup>0</sup>(<b><i>X</i></b>)<sup>T</sup>, thereby having <b><i>F</i></b>(<b><i>X</i></b>,0)=<b><i>I</i></b>, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0006-0","citationCount":"8","resultStr":"{\"title\":\"Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations\",\"authors\":\"Nikhil Chandra Admal,&nbsp;Giacomo Po,&nbsp;Jaime Marian\",\"doi\":\"10.1186/s41313-017-0006-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. <b><i>F</i></b>(<b><i>X,t</i></b>)=<b><i>F</i></b>\\n <sup>L</sup>(<b><i>X,t</i></b>)<b><i>F</i></b>\\n <sup>P</sup>(<b><i>X,t</i></b>), an initial stress-free polycrystal is constructed by imposing <b><i>F</i></b>\\n <sup>L</sup> to be a piecewise constant rotation field <b><i>R</i></b>\\n <sup>0</sup>(<b><i>X</i></b>), and <b><i>F</i></b>\\n <sup>P</sup>=<b><i>R</i></b>\\n <sup>0</sup>(<b><i>X</i></b>)<sup>T</sup>, thereby having <b><i>F</i></b>(<b><i>X</i></b>,0)=<b><i>I</i></b>, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.</p>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41313-017-0006-0\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-017-0006-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-017-0006-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

多晶塑性建模的标准方法是在每个晶粒中使用单晶的晶体塑性模型,并在晶界上施加适当的牵引和滑移边界条件。在这种方式下,系统被建模为具有匹配边界条件的边值问题的集合。在本文中,我们建立了一个多晶材料的扩散界面晶体塑性模型,该模型导致以单晶为参考构型的单一边值问题。将变形梯度乘分解为晶格和塑性部分,即F(X,t)=F L(X,t)F P(X,t),通过将F L施加为分段恒定旋转场r0 (X), F P= r0 (X) t,从而使F(X,0)=I,并且弹性应变为零,构建初始无应力多晶体。该模型可作为具有晶界能和晶界演化的高阶晶体塑性模型的先驱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations

Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations

The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F(X,t)=F L(X,t)F P(X,t), an initial stress-free polycrystal is constructed by imposing F L to be a piecewise constant rotation field R 0(X), and F P=R 0(X)T, thereby having F(X,0)=I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信