{"title":"划分和分析秩在大域上是等价的","authors":"A. Cohen, Guy Moshkovitz","doi":"10.1215/00127094-2022-0086","DOIUrl":null,"url":null,"abstract":"We prove that the partition rank and the analytic rank of tensors are equal up to a constant, over finite fields of any characteristic and any large enough cardinality depending on the analytic rank. Moreover, we show that a plausible improvement of our field cardinality requirement would imply that the ranks are equal up to 1+o(1) in the exponent over every finite field. At the core of the proof is a technique for lifting decompositions of multilinear polynomials in an open subset of an algebraic variety, and a technique for finding a large subvariety that retains all rational points such that at least one of these points satisfies a finite-field analogue of genericity with respect to it. Proving the equivalence between these two ranks, ideally over fixed finite fields, is a central question in additive combinatorics, and was reiterated by multiple authors. As a corollary we prove, allowing the field to depend on the value of the norm, the Polynomial Gowers Inverse Conjecture in the d vs. d-1 case.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Partition and analytic rank are equivalent over large fields\",\"authors\":\"A. Cohen, Guy Moshkovitz\",\"doi\":\"10.1215/00127094-2022-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the partition rank and the analytic rank of tensors are equal up to a constant, over finite fields of any characteristic and any large enough cardinality depending on the analytic rank. Moreover, we show that a plausible improvement of our field cardinality requirement would imply that the ranks are equal up to 1+o(1) in the exponent over every finite field. At the core of the proof is a technique for lifting decompositions of multilinear polynomials in an open subset of an algebraic variety, and a technique for finding a large subvariety that retains all rational points such that at least one of these points satisfies a finite-field analogue of genericity with respect to it. Proving the equivalence between these two ranks, ideally over fixed finite fields, is a central question in additive combinatorics, and was reiterated by multiple authors. As a corollary we prove, allowing the field to depend on the value of the norm, the Polynomial Gowers Inverse Conjecture in the d vs. d-1 case.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0086\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0086","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Partition and analytic rank are equivalent over large fields
We prove that the partition rank and the analytic rank of tensors are equal up to a constant, over finite fields of any characteristic and any large enough cardinality depending on the analytic rank. Moreover, we show that a plausible improvement of our field cardinality requirement would imply that the ranks are equal up to 1+o(1) in the exponent over every finite field. At the core of the proof is a technique for lifting decompositions of multilinear polynomials in an open subset of an algebraic variety, and a technique for finding a large subvariety that retains all rational points such that at least one of these points satisfies a finite-field analogue of genericity with respect to it. Proving the equivalence between these two ranks, ideally over fixed finite fields, is a central question in additive combinatorics, and was reiterated by multiple authors. As a corollary we prove, allowing the field to depend on the value of the norm, the Polynomial Gowers Inverse Conjecture in the d vs. d-1 case.