基于低秩张量三重分解的高光谱超分辨率

IF 1.2 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
Xiaofei Cui, Jingya Chang
{"title":"基于低秩张量三重分解的高光谱超分辨率","authors":"Xiaofei Cui, Jingya Chang","doi":"10.3934/jimo.2023110","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) and multispectral image (MSI) fusion aims at producing a super-resolution image (SRI). In this paper, we establish a nonconvex optimization model for image fusion problems through low-rank tensor triple decomposition. Using the L-BFGS approach, we develop a first-order optimization algorithm for obtaining the desired super-resolution image (TTDSR). Furthermore, two detailed methods are provided for calculating the gradient of the objective function. With the aid of the Kurdyka-Lojasiewicz property, the iterative sequence is proved to converge to a stationary point. Finally, experimental results on different datasets show the effectiveness of our proposed approach.","PeriodicalId":16022,"journal":{"name":"Journal of Industrial and Management Optimization","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral super-resolution via low rank tensor triple decomposition\",\"authors\":\"Xiaofei Cui, Jingya Chang\",\"doi\":\"10.3934/jimo.2023110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image (HSI) and multispectral image (MSI) fusion aims at producing a super-resolution image (SRI). In this paper, we establish a nonconvex optimization model for image fusion problems through low-rank tensor triple decomposition. Using the L-BFGS approach, we develop a first-order optimization algorithm for obtaining the desired super-resolution image (TTDSR). Furthermore, two detailed methods are provided for calculating the gradient of the objective function. With the aid of the Kurdyka-Lojasiewicz property, the iterative sequence is proved to converge to a stationary point. Finally, experimental results on different datasets show the effectiveness of our proposed approach.\",\"PeriodicalId\":16022,\"journal\":{\"name\":\"Journal of Industrial and Management Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Management Optimization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/jimo.2023110\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Management Optimization","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/jimo.2023110","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像(HSI)和多光谱图像(MSI)融合的目的是产生超分辨率图像(SRI)。本文通过低秩张量三重分解,建立了图像融合问题的非凸优化模型。利用L-BFGS方法,我们开发了一种一阶优化算法来获得所需的超分辨率图像(TTDSR)。此外,还提供了两种计算目标函数梯度的详细方法。借助于Kurdyka-Lojasiewicz性质,证明了迭代序列收敛于一个平稳点。最后,在不同数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral super-resolution via low rank tensor triple decomposition
Hyperspectral image (HSI) and multispectral image (MSI) fusion aims at producing a super-resolution image (SRI). In this paper, we establish a nonconvex optimization model for image fusion problems through low-rank tensor triple decomposition. Using the L-BFGS approach, we develop a first-order optimization algorithm for obtaining the desired super-resolution image (TTDSR). Furthermore, two detailed methods are provided for calculating the gradient of the objective function. With the aid of the Kurdyka-Lojasiewicz property, the iterative sequence is proved to converge to a stationary point. Finally, experimental results on different datasets show the effectiveness of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
15.40%
发文量
207
审稿时长
18 months
期刊介绍: JIMO is an international journal devoted to publishing peer-reviewed, high quality, original papers on the non-trivial interplay between numerical optimization methods and practically significant problems in industry or management so as to achieve superior design, planning and/or operation. Its objective is to promote collaboration between optimization specialists, industrial practitioners and management scientists so that important practical industrial and management problems can be addressed by the use of appropriate, recent advanced optimization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信