一类具有低维分层和柱正交性的空间填充设计

Pub Date : 2023-03-28 DOI:10.1002/cjs.11761
Pengnan Li, Fasheng Sun
{"title":"一类具有低维分层和柱正交性的空间填充设计","authors":"Pengnan Li,&nbsp;Fasheng Sun","doi":"10.1002/cjs.11761","DOIUrl":null,"url":null,"abstract":"<p>Strong orthogonal arrays are suitable designs for computer experiments because of stratification in low-dimensional projections. However, strong orthogonal arrays may be very expensive for a moderate number of factors. In this article, we develop a method for constructing space-filling designs with more economical run sizes. These designs are not only column-orthogonal but also enjoy a large proportion of low-dimensional stratification properties that strong orthogonal arrays ought to have. Moreover, a class of proposed designs can be 3-orthogonal. In addition, some theoretical results on regular fractional factorial designs are obtained as a by-product.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of space-filling designs with low-dimensional stratification and column orthogonality\",\"authors\":\"Pengnan Li,&nbsp;Fasheng Sun\",\"doi\":\"10.1002/cjs.11761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strong orthogonal arrays are suitable designs for computer experiments because of stratification in low-dimensional projections. However, strong orthogonal arrays may be very expensive for a moderate number of factors. In this article, we develop a method for constructing space-filling designs with more economical run sizes. These designs are not only column-orthogonal but also enjoy a large proportion of low-dimensional stratification properties that strong orthogonal arrays ought to have. Moreover, a class of proposed designs can be 3-orthogonal. In addition, some theoretical results on regular fractional factorial designs are obtained as a by-product.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强正交阵列适合计算机实验设计,因为它在低维投影中具有分层作用。然而,对于中等数量的因子来说,强正交阵列可能非常昂贵。在本文中,我们开发了一种方法,用于构建运行规模更经济的空间填充设计。这些设计不仅具有列正交性,而且还具有强正交阵列所应具有的大量低维分层特性。此外,所提出的一类设计可以是 3 正交的。此外,作为副产品,还获得了一些关于正则分数阶乘设计的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A class of space-filling designs with low-dimensional stratification and column orthogonality

Strong orthogonal arrays are suitable designs for computer experiments because of stratification in low-dimensional projections. However, strong orthogonal arrays may be very expensive for a moderate number of factors. In this article, we develop a method for constructing space-filling designs with more economical run sizes. These designs are not only column-orthogonal but also enjoy a large proportion of low-dimensional stratification properties that strong orthogonal arrays ought to have. Moreover, a class of proposed designs can be 3-orthogonal. In addition, some theoretical results on regular fractional factorial designs are obtained as a by-product.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信