{"title":"生物质热解生产生物燃料的催化剂综述","authors":"A. A. Imran, E. Bramer, K. Seshan, G. Brem","doi":"10.18331/BRJ2018.5.4.2","DOIUrl":null,"url":null,"abstract":"In-situ catalytic pyrolysis of biomass has been extensively studied in recent years for cost-competitive production of high quality bio-oil. To achieve that, numerous catalysts have been studied to facilitate in-situ upgrading of low-grade condensable vapors (bio-oil) by converting oxygenated compounds and large-molecule species. In this review, these catalysts are categorized in different families and a systematic evaluation of the catalyst effects on pyrolysis products and their characteristics is carried out with respect to the scale of the experimental setup. Among these catalysts, microporous zeolites are considered as most promising in terms of performance and the potential to tailor the desired bio-oil properties. More specifically, the prominent advantages of zeolites include efficient deoxygenation and molecular weight reduction of the resultant bio-oil, while the main drawbacks are decreases in the yield of bio-oil’s organic phase and catalyst deactivation by coke deposition. In addition to the zeolite-based catalysts, other catalysts including mesoporous aluminosilicates, a widely-applied class of catalysts used for deoxygenation of bio-oil as well as alkaline compounds are also reviewed and discussed herein. The research on the latter has not been extensive but the preliminary results have revealed their potential for deoxygenation of bio-oil, production of hydrocarbons, and reduction of undesired compounds. Nevertheless, these catalysts need to be further investigated systematically. Overall, further development of dedicated catalysts for selective deoxygenation and cracking of bio-oil would be essential for scaling up the existing pyrolysis technologies to achieve commercial production of biofuels through pyrolysis.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"An overview of catalysts in biomass pyrolysis for production of biofuels\",\"authors\":\"A. A. Imran, E. Bramer, K. Seshan, G. Brem\",\"doi\":\"10.18331/BRJ2018.5.4.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-situ catalytic pyrolysis of biomass has been extensively studied in recent years for cost-competitive production of high quality bio-oil. To achieve that, numerous catalysts have been studied to facilitate in-situ upgrading of low-grade condensable vapors (bio-oil) by converting oxygenated compounds and large-molecule species. In this review, these catalysts are categorized in different families and a systematic evaluation of the catalyst effects on pyrolysis products and their characteristics is carried out with respect to the scale of the experimental setup. Among these catalysts, microporous zeolites are considered as most promising in terms of performance and the potential to tailor the desired bio-oil properties. More specifically, the prominent advantages of zeolites include efficient deoxygenation and molecular weight reduction of the resultant bio-oil, while the main drawbacks are decreases in the yield of bio-oil’s organic phase and catalyst deactivation by coke deposition. In addition to the zeolite-based catalysts, other catalysts including mesoporous aluminosilicates, a widely-applied class of catalysts used for deoxygenation of bio-oil as well as alkaline compounds are also reviewed and discussed herein. The research on the latter has not been extensive but the preliminary results have revealed their potential for deoxygenation of bio-oil, production of hydrocarbons, and reduction of undesired compounds. Nevertheless, these catalysts need to be further investigated systematically. Overall, further development of dedicated catalysts for selective deoxygenation and cracking of bio-oil would be essential for scaling up the existing pyrolysis technologies to achieve commercial production of biofuels through pyrolysis.\",\"PeriodicalId\":46938,\"journal\":{\"name\":\"Biofuel Research Journal-BRJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuel Research Journal-BRJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18331/BRJ2018.5.4.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2018.5.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An overview of catalysts in biomass pyrolysis for production of biofuels
In-situ catalytic pyrolysis of biomass has been extensively studied in recent years for cost-competitive production of high quality bio-oil. To achieve that, numerous catalysts have been studied to facilitate in-situ upgrading of low-grade condensable vapors (bio-oil) by converting oxygenated compounds and large-molecule species. In this review, these catalysts are categorized in different families and a systematic evaluation of the catalyst effects on pyrolysis products and their characteristics is carried out with respect to the scale of the experimental setup. Among these catalysts, microporous zeolites are considered as most promising in terms of performance and the potential to tailor the desired bio-oil properties. More specifically, the prominent advantages of zeolites include efficient deoxygenation and molecular weight reduction of the resultant bio-oil, while the main drawbacks are decreases in the yield of bio-oil’s organic phase and catalyst deactivation by coke deposition. In addition to the zeolite-based catalysts, other catalysts including mesoporous aluminosilicates, a widely-applied class of catalysts used for deoxygenation of bio-oil as well as alkaline compounds are also reviewed and discussed herein. The research on the latter has not been extensive but the preliminary results have revealed their potential for deoxygenation of bio-oil, production of hydrocarbons, and reduction of undesired compounds. Nevertheless, these catalysts need to be further investigated systematically. Overall, further development of dedicated catalysts for selective deoxygenation and cracking of bio-oil would be essential for scaling up the existing pyrolysis technologies to achieve commercial production of biofuels through pyrolysis.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.