Keith和Zanelloon关于t正则分割的一些猜想的证明

Pub Date : 2022-01-18 DOI:10.2140/pjm.2022.320.425
A. Singh, Rupam Barman
{"title":"Keith和Zanelloon关于t正则分割的一些猜想的证明","authors":"A. Singh, Rupam Barman","doi":"10.2140/pjm.2022.320.425","DOIUrl":null,"url":null,"abstract":"For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proofs of some conjectures of Keith and Zanello\\non t-regular partition\",\"authors\":\"A. Singh, Rupam Barman\",\"doi\":\"10.2140/pjm.2022.320.425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.320.425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.320.425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于正整数$t$,设$b_{t}(n)$表示非负整数$n$的$t$正则分区的个数。在最近的一篇论文中,Keith和Zanello为$b_{t}(n)$的某些值$t$建立了模$2$的同余和自相似结果的无限族。此外,对于$t$的某些值,他们提出了关于$b_t(n)$模$2$的自相似性的一些猜想。在本文中,我们证明了他们对$b_3(n)$和$b_{25}(n)美元的猜想。我们还证明了$b_{21}(n)$模$2$的自相似性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Proofs of some conjectures of Keith and Zanello on t-regular partition
For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信