{"title":"Keith和Zanelloon关于t正则分割的一些猜想的证明","authors":"A. Singh, Rupam Barman","doi":"10.2140/pjm.2022.320.425","DOIUrl":null,"url":null,"abstract":"For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proofs of some conjectures of Keith and Zanello\\non t-regular partition\",\"authors\":\"A. Singh, Rupam Barman\",\"doi\":\"10.2140/pjm.2022.320.425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.320.425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.320.425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proofs of some conjectures of Keith and Zanello
on t-regular partition
For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.