Keith和Zanelloon关于t正则分割的一些猜想的证明

IF 0.7 3区 数学 Q2 MATHEMATICS
A. Singh, Rupam Barman
{"title":"Keith和Zanelloon关于t正则分割的一些猜想的证明","authors":"A. Singh, Rupam Barman","doi":"10.2140/pjm.2022.320.425","DOIUrl":null,"url":null,"abstract":"For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proofs of some conjectures of Keith and Zanello\\non t-regular partition\",\"authors\":\"A. Singh, Rupam Barman\",\"doi\":\"10.2140/pjm.2022.320.425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.320.425\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.320.425","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于正整数$t$,设$b_{t}(n)$表示非负整数$n$的$t$正则分区的个数。在最近的一篇论文中,Keith和Zanello为$b_{t}(n)$的某些值$t$建立了模$2$的同余和自相似结果的无限族。此外,对于$t$的某些值,他们提出了关于$b_t(n)$模$2$的自相似性的一些猜想。在本文中,我们证明了他们对$b_3(n)$和$b_{25}(n)美元的猜想。我们还证明了$b_{21}(n)$模$2$的自相似性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proofs of some conjectures of Keith and Zanello on t-regular partition
For a positive integer $t$, let $b_{t}(n)$ denote the number of $t$-regular partitions of a nonnegative integer $n$. In a recent paper, Keith and Zanello established infinite families of congruences and self-similarity results modulo $2$ for $b_{t}(n)$ for certain values of $t$. Further, they proposed some conjectures on self-similarities of $b_t(n)$ modulo $2$ for certain values of $t$. In this paper, we prove their conjectures on $b_3(n)$ and $b_{25}(n)$. We also prove a self-similarity result for $b_{21}(n)$ modulo $2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信