费米能作为描述电荷补偿机制的共同参数:氧化电陶瓷的费米能级工程之路

IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Andreas Klein, Karsten Albe, Nicole Bein, Oliver Clemens, Kim Alexander Creutz, Paul Erhart, Markus Frericks, Elaheh Ghorbani, Jan Philipp Hofmann, Binxiang Huang, Bernhard Kaiser, Ute Kolb, Jurij Koruza, Christian Kübel, Katharina N. S. Lohaus, Jürgen Rödel, Jochen Rohrer, Wolfgang Rheinheimer, Roger A. De Souza, Verena Streibel, Anke Weidenkaff, Marc Widenmeyer, Bai-Xiang Xu, Hongbin Zhang
{"title":"费米能作为描述电荷补偿机制的共同参数:氧化电陶瓷的费米能级工程之路","authors":"Andreas Klein,&nbsp;Karsten Albe,&nbsp;Nicole Bein,&nbsp;Oliver Clemens,&nbsp;Kim Alexander Creutz,&nbsp;Paul Erhart,&nbsp;Markus Frericks,&nbsp;Elaheh Ghorbani,&nbsp;Jan Philipp Hofmann,&nbsp;Binxiang Huang,&nbsp;Bernhard Kaiser,&nbsp;Ute Kolb,&nbsp;Jurij Koruza,&nbsp;Christian Kübel,&nbsp;Katharina N. S. Lohaus,&nbsp;Jürgen Rödel,&nbsp;Jochen Rohrer,&nbsp;Wolfgang Rheinheimer,&nbsp;Roger A. De Souza,&nbsp;Verena Streibel,&nbsp;Anke Weidenkaff,&nbsp;Marc Widenmeyer,&nbsp;Bai-Xiang Xu,&nbsp;Hongbin Zhang","doi":"10.1007/s10832-023-00324-y","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 3","pages":"147 - 177"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00324-y.pdf","citationCount":"0","resultStr":"{\"title\":\"The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics\",\"authors\":\"Andreas Klein,&nbsp;Karsten Albe,&nbsp;Nicole Bein,&nbsp;Oliver Clemens,&nbsp;Kim Alexander Creutz,&nbsp;Paul Erhart,&nbsp;Markus Frericks,&nbsp;Elaheh Ghorbani,&nbsp;Jan Philipp Hofmann,&nbsp;Binxiang Huang,&nbsp;Bernhard Kaiser,&nbsp;Ute Kolb,&nbsp;Jurij Koruza,&nbsp;Christian Kübel,&nbsp;Katharina N. S. Lohaus,&nbsp;Jürgen Rödel,&nbsp;Jochen Rohrer,&nbsp;Wolfgang Rheinheimer,&nbsp;Roger A. De Souza,&nbsp;Verena Streibel,&nbsp;Anke Weidenkaff,&nbsp;Marc Widenmeyer,&nbsp;Bai-Xiang Xu,&nbsp;Hongbin Zhang\",\"doi\":\"10.1007/s10832-023-00324-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.</p></div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"51 3\",\"pages\":\"147 - 177\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10832-023-00324-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-023-00324-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-023-00324-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

化学取代(可以是同价或异价)是调整材料特性的主要策略。材料对取代的反应有多种方式。等价置换会改变状态密度,而异价置换,即掺杂,可以引起电子补偿、离子补偿、阳离子或阴离子的价态变化,或导致掺杂物的分离或中和。虽然原则上所有这些都可以同时发生,但为了确定材料特性,通常需要选择某种机制。因此,能够预测和控制单独的补偿机制应该是材料科学的一个关键目标。本论文从费米能作为不同补偿机制的通用描述符的角度概述了实现这一目标的途径。由于各种补偿机制所涉及的缺陷形成焓都取决于费米能,因此这种概括成为可能。为了控制材料特性,有必要调整相关缺陷的形成焓和电荷转移水平。了解这些因素如何依赖于材料成分,将为通过费米级工程设计材料开辟一条新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electroceramics
Journal of Electroceramics 工程技术-材料科学:硅酸盐
CiteScore
2.80
自引率
5.90%
发文量
22
审稿时长
5.7 months
期刊介绍: While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including: -insulating to metallic and fast ion conductivity -piezo-, ferro-, and pyro-electricity -electro- and nonlinear optical properties -feromagnetism. When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice. The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信