椭圆分布多变量散射和定位的高效高分解估计器

Pub Date : 2023-04-16 DOI:10.1002/cjs.11770
Justin Fishbone, Lamine Mili
{"title":"椭圆分布多变量散射和定位的高效高分解估计器","authors":"Justin Fishbone,&nbsp;Lamine Mili","doi":"10.1002/cjs.11770","DOIUrl":null,"url":null,"abstract":"<p>High-breakdown-point estimators of multivariate location and shape matrices, such as the <span></span><math>\n <mrow>\n <mtext>MM</mtext>\n </mrow></math>-<i>estimator</i> with smoothed hard rejection and the Rocke <span></span><math>\n <mrow>\n <mi>S</mi>\n </mrow></math>-estimator, are generally designed to have high efficiency for Gaussian data. However, many phenomena are non-Gaussian, and these estimators can therefore have poor efficiency. This article proposes a new tunable <span></span><math>\n <mrow>\n <mi>S</mi>\n </mrow></math>-estimator, termed the <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </mrow></math>-estimator, for the general class of symmetric elliptical distributions, a class containing many common families such as the multivariate Gaussian, <span></span><math>\n <mrow>\n <mi>t</mi>\n </mrow></math>-, Cauchy, Laplace, hyperbolic, and normal inverse Gaussian distributions. Across this class, the <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </mrow></math>-estimator is shown to generally provide higher maximum efficiency than other leading high-breakdown estimators while maintaining the maximum breakdown point. Furthermore, the <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </mrow></math>-estimator is demonstrated to be distributionally robust, and its robustness to outliers is demonstrated to be on par with these leading estimators while also being more stable with respect to initial conditions. From a practical viewpoint, these properties make the <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </mrow></math>-estimator broadly applicable for practitioners. These advantages are demonstrated with an example application—the minimum-variance optimal allocation of financial portfolio investments.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11770","citationCount":"0","resultStr":"{\"title\":\"New highly efficient high-breakdown estimator of multivariate scatter and location for elliptical distributions\",\"authors\":\"Justin Fishbone,&nbsp;Lamine Mili\",\"doi\":\"10.1002/cjs.11770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-breakdown-point estimators of multivariate location and shape matrices, such as the <span></span><math>\\n <mrow>\\n <mtext>MM</mtext>\\n </mrow></math>-<i>estimator</i> with smoothed hard rejection and the Rocke <span></span><math>\\n <mrow>\\n <mi>S</mi>\\n </mrow></math>-estimator, are generally designed to have high efficiency for Gaussian data. However, many phenomena are non-Gaussian, and these estimators can therefore have poor efficiency. This article proposes a new tunable <span></span><math>\\n <mrow>\\n <mi>S</mi>\\n </mrow></math>-estimator, termed the <span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow></math>-estimator, for the general class of symmetric elliptical distributions, a class containing many common families such as the multivariate Gaussian, <span></span><math>\\n <mrow>\\n <mi>t</mi>\\n </mrow></math>-, Cauchy, Laplace, hyperbolic, and normal inverse Gaussian distributions. Across this class, the <span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow></math>-estimator is shown to generally provide higher maximum efficiency than other leading high-breakdown estimators while maintaining the maximum breakdown point. Furthermore, the <span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow></math>-estimator is demonstrated to be distributionally robust, and its robustness to outliers is demonstrated to be on par with these leading estimators while also being more stable with respect to initial conditions. From a practical viewpoint, these properties make the <span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </mrow></math>-estimator broadly applicable for practitioners. These advantages are demonstrated with an example application—the minimum-variance optimal allocation of financial portfolio investments.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11770\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多变量位置和形状矩阵的高崩溃点估计器,如光滑硬抑制mm估计器和rock s估计器,通常在高斯分布下具有很高的效率。然而,许多现象是非高斯的,因此这些估计器的效率很低。对于一般的对称椭圆分布,本文提出了一种新的可调s估计量,称为S-q估计量,这类分布包含许多常见的族,如多元高斯分布、t-分布、柯西分布、拉普拉斯分布、双曲分布和正态逆高斯分布。在这个类别中,S-q估计器通常比其他领先的高击穿估计器提供更高的最大效率,同时保持最大击穿点。此外,它的鲁棒性被证明与这些领先的估计相当,同时相对于初始条件也更稳定。从实际的角度来看,这些特性使S-q广泛适用于从业者。这通过一个示例应用程序来演示——金融组合投资的最小方差最优分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New highly efficient high-breakdown estimator of multivariate scatter and location for elliptical distributions

分享
查看原文
New highly efficient high-breakdown estimator of multivariate scatter and location for elliptical distributions

High-breakdown-point estimators of multivariate location and shape matrices, such as the MM -estimator with smoothed hard rejection and the Rocke S -estimator, are generally designed to have high efficiency for Gaussian data. However, many phenomena are non-Gaussian, and these estimators can therefore have poor efficiency. This article proposes a new tunable S -estimator, termed the S q -estimator, for the general class of symmetric elliptical distributions, a class containing many common families such as the multivariate Gaussian, t -, Cauchy, Laplace, hyperbolic, and normal inverse Gaussian distributions. Across this class, the S q -estimator is shown to generally provide higher maximum efficiency than other leading high-breakdown estimators while maintaining the maximum breakdown point. Furthermore, the S q -estimator is demonstrated to be distributionally robust, and its robustness to outliers is demonstrated to be on par with these leading estimators while also being more stable with respect to initial conditions. From a practical viewpoint, these properties make the S q -estimator broadly applicable for practitioners. These advantages are demonstrated with an example application—the minimum-variance optimal allocation of financial portfolio investments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信