{"title":"与日落后赤道等离子体气泡相关的耗尽结构的场对准尺度长度","authors":"C. Xiong, H. Lühr","doi":"10.1051/swsc/2023002","DOIUrl":null,"url":null,"abstract":"In this study we make use of the Swarm counter-rotation constellation for estimating the typical scale length of the post-sunset equatorial plasma bubbles (EPBs) along fluxtubes. The close approaches between Swarm spacecraft near the equator occurred in September and October 2021, covering magnetic local time from 19:00 to 23:00, which is favorable for the occurrence of EPBs. It is the first time to show the quasi-simultaneously samplings by Swarm A/C and B of the same fluxtube but at different altitudes, and the observations frequently reveal plasma density depletions only at one spacecraft altitude, confirming that EPBs extend only over finite parts of the fluxtube. Based on a statistical analysis of double and single EPB detections on the same fluxtube, our results imply the typical field-aligned scale length of the depletion structures associated with EPBs of the order of 550 km. Our detections are from the lower part of the depleted fluxtubes, and they coincide well with the latitudes of the equatorial ionization anomaly. In the upper part of the fluxtube near the magnetic equator, our estimation technique does not work well because of too large field-aligned spacecraft separation of the Swarm satellites.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Field-aligned scale length of depleted structures associated with post-sunset equatorial plasma bubbles\",\"authors\":\"C. Xiong, H. Lühr\",\"doi\":\"10.1051/swsc/2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we make use of the Swarm counter-rotation constellation for estimating the typical scale length of the post-sunset equatorial plasma bubbles (EPBs) along fluxtubes. The close approaches between Swarm spacecraft near the equator occurred in September and October 2021, covering magnetic local time from 19:00 to 23:00, which is favorable for the occurrence of EPBs. It is the first time to show the quasi-simultaneously samplings by Swarm A/C and B of the same fluxtube but at different altitudes, and the observations frequently reveal plasma density depletions only at one spacecraft altitude, confirming that EPBs extend only over finite parts of the fluxtube. Based on a statistical analysis of double and single EPB detections on the same fluxtube, our results imply the typical field-aligned scale length of the depletion structures associated with EPBs of the order of 550 km. Our detections are from the lower part of the depleted fluxtubes, and they coincide well with the latitudes of the equatorial ionization anomaly. In the upper part of the fluxtube near the magnetic equator, our estimation technique does not work well because of too large field-aligned spacecraft separation of the Swarm satellites.\",\"PeriodicalId\":17034,\"journal\":{\"name\":\"Journal of Space Weather and Space Climate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Weather and Space Climate\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/swsc/2023002\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2023002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Field-aligned scale length of depleted structures associated with post-sunset equatorial plasma bubbles
In this study we make use of the Swarm counter-rotation constellation for estimating the typical scale length of the post-sunset equatorial plasma bubbles (EPBs) along fluxtubes. The close approaches between Swarm spacecraft near the equator occurred in September and October 2021, covering magnetic local time from 19:00 to 23:00, which is favorable for the occurrence of EPBs. It is the first time to show the quasi-simultaneously samplings by Swarm A/C and B of the same fluxtube but at different altitudes, and the observations frequently reveal plasma density depletions only at one spacecraft altitude, confirming that EPBs extend only over finite parts of the fluxtube. Based on a statistical analysis of double and single EPB detections on the same fluxtube, our results imply the typical field-aligned scale length of the depletion structures associated with EPBs of the order of 550 km. Our detections are from the lower part of the depleted fluxtubes, and they coincide well with the latitudes of the equatorial ionization anomaly. In the upper part of the fluxtube near the magnetic equator, our estimation technique does not work well because of too large field-aligned spacecraft separation of the Swarm satellites.
期刊介绍:
The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.