Syed Ali Abbas, M. Saeed, Mukhtiar Ghani, Taseer Ahmad
{"title":"利用电阻率层析成像技术探测地下空腔来自巴基斯坦奎达南部的案例研究","authors":"Syed Ali Abbas, M. Saeed, Mukhtiar Ghani, Taseer Ahmad","doi":"10.2478/pjg-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract Dipole-dipole electrical resistivity tomographic method was applied to investigate the subsurface cavities at Staff Welfare Hospital & School Quetta. A total of 890-meter profile line was covered along five smaller profile lines and fracture zones with maximum 21 meters interval. The cavity system along profile line-1 and 2 was very restricted and had no direct impact on infrastructure while major cavity beneath the building was traced at profile line-3 and line-4 thus constituting a ~20m wide cavity system with 3-4 small interconnected cavities between depths of 7 to 21 meters. This system was also traced at profile line-4 at a depth of 10 meters having a reduced width of 10m. At profile line-5, a few other cavities were detected that proved imperceptible due to limitations in data acquisition. To conclude, the cavity systems traced in profile line-3 and profile line-4 were the most perilous ones and are commonly the foremost reason for building collapse.","PeriodicalId":32520,"journal":{"name":"Pakistan Journal of Geology","volume":"4 1","pages":"101 - 105"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Subsurface Cavity Detection Using Electrical Resistivity Tomography (Ert); A Case Study from Southern Quetta, Pakistan\",\"authors\":\"Syed Ali Abbas, M. Saeed, Mukhtiar Ghani, Taseer Ahmad\",\"doi\":\"10.2478/pjg-2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Dipole-dipole electrical resistivity tomographic method was applied to investigate the subsurface cavities at Staff Welfare Hospital & School Quetta. A total of 890-meter profile line was covered along five smaller profile lines and fracture zones with maximum 21 meters interval. The cavity system along profile line-1 and 2 was very restricted and had no direct impact on infrastructure while major cavity beneath the building was traced at profile line-3 and line-4 thus constituting a ~20m wide cavity system with 3-4 small interconnected cavities between depths of 7 to 21 meters. This system was also traced at profile line-4 at a depth of 10 meters having a reduced width of 10m. At profile line-5, a few other cavities were detected that proved imperceptible due to limitations in data acquisition. To conclude, the cavity systems traced in profile line-3 and profile line-4 were the most perilous ones and are commonly the foremost reason for building collapse.\",\"PeriodicalId\":32520,\"journal\":{\"name\":\"Pakistan Journal of Geology\",\"volume\":\"4 1\",\"pages\":\"101 - 105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pjg-2020-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjg-2020-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subsurface Cavity Detection Using Electrical Resistivity Tomography (Ert); A Case Study from Southern Quetta, Pakistan
Abstract Dipole-dipole electrical resistivity tomographic method was applied to investigate the subsurface cavities at Staff Welfare Hospital & School Quetta. A total of 890-meter profile line was covered along five smaller profile lines and fracture zones with maximum 21 meters interval. The cavity system along profile line-1 and 2 was very restricted and had no direct impact on infrastructure while major cavity beneath the building was traced at profile line-3 and line-4 thus constituting a ~20m wide cavity system with 3-4 small interconnected cavities between depths of 7 to 21 meters. This system was also traced at profile line-4 at a depth of 10 meters having a reduced width of 10m. At profile line-5, a few other cavities were detected that proved imperceptible due to limitations in data acquisition. To conclude, the cavity systems traced in profile line-3 and profile line-4 were the most perilous ones and are commonly the foremost reason for building collapse.