{"title":"基于连通正则化的改进最优delaunay三角剖分方法","authors":"Yong-qing Hai, Yu-fei Guo, Mo Dong, Rong-li Zhao, Ke-wu Sun, Fei-fei Shang","doi":"10.1007/s11766-022-4588-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the underlying properties of optimal Delaunay triangulations (ODT) and propose enhanced ODT methods combined with connectivity regularization. Based on optimizing node positions and Delaunay triangulation iteratively, ODT methods are very effective in mesh improvement. This paper demonstrates that the energy function minimized by ODT is nonconvex and unsmooth, thus, ODT methods suffer the problem of falling into a local minimum inevitably. Unlike general ways that minimize the ODT energy function in terms of mathematics directly, we take an outflanking strategy combining ODT methods with connectivity regularization for this issue. Connectivity regularization reduces the number of irregular nodes by basic topological operations, which can be regarded as a perturbation to help ODT methods jump out of a poor local minimum. Although the enhanced ODT methods cannot guarantee to obtain a global minimum, it starts a new viewpoint of minimizing ODT energy which uses topological operations but mathematical methods. And in terms of practical effect, several experimental results illustrate the enhanced ODT methods are capable of improving the mesh furtherly compared to general ODT methods.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"37 3","pages":"453 - 469"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced optimal delaunay triangulation methods with connectivity regularization\",\"authors\":\"Yong-qing Hai, Yu-fei Guo, Mo Dong, Rong-li Zhao, Ke-wu Sun, Fei-fei Shang\",\"doi\":\"10.1007/s11766-022-4588-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the underlying properties of optimal Delaunay triangulations (ODT) and propose enhanced ODT methods combined with connectivity regularization. Based on optimizing node positions and Delaunay triangulation iteratively, ODT methods are very effective in mesh improvement. This paper demonstrates that the energy function minimized by ODT is nonconvex and unsmooth, thus, ODT methods suffer the problem of falling into a local minimum inevitably. Unlike general ways that minimize the ODT energy function in terms of mathematics directly, we take an outflanking strategy combining ODT methods with connectivity regularization for this issue. Connectivity regularization reduces the number of irregular nodes by basic topological operations, which can be regarded as a perturbation to help ODT methods jump out of a poor local minimum. Although the enhanced ODT methods cannot guarantee to obtain a global minimum, it starts a new viewpoint of minimizing ODT energy which uses topological operations but mathematical methods. And in terms of practical effect, several experimental results illustrate the enhanced ODT methods are capable of improving the mesh furtherly compared to general ODT methods.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"37 3\",\"pages\":\"453 - 469\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-022-4588-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-022-4588-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced optimal delaunay triangulation methods with connectivity regularization
In this paper, we study the underlying properties of optimal Delaunay triangulations (ODT) and propose enhanced ODT methods combined with connectivity regularization. Based on optimizing node positions and Delaunay triangulation iteratively, ODT methods are very effective in mesh improvement. This paper demonstrates that the energy function minimized by ODT is nonconvex and unsmooth, thus, ODT methods suffer the problem of falling into a local minimum inevitably. Unlike general ways that minimize the ODT energy function in terms of mathematics directly, we take an outflanking strategy combining ODT methods with connectivity regularization for this issue. Connectivity regularization reduces the number of irregular nodes by basic topological operations, which can be regarded as a perturbation to help ODT methods jump out of a poor local minimum. Although the enhanced ODT methods cannot guarantee to obtain a global minimum, it starts a new viewpoint of minimizing ODT energy which uses topological operations but mathematical methods. And in terms of practical effect, several experimental results illustrate the enhanced ODT methods are capable of improving the mesh furtherly compared to general ODT methods.
期刊介绍:
Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects.
The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry.
Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.