中心牛顿力场中等腰四面体的旋转:Staude锥

IF 0.3 Q4 MECHANICS
A. A. Burov, E. A. Nikonova
{"title":"中心牛顿力场中等腰四面体的旋转:Staude锥","authors":"A. A. Burov,&nbsp;E. A. Nikonova","doi":"10.3103/S0027133021050034","DOIUrl":null,"url":null,"abstract":"<p>The Staude cone is considered in the problem of motion of a homogeneous isosceles tetrahedron in a central Newtonian force field. The nature of the Staude cone degeneracy is studied for the case when an isosceles tetrahedron is close to regular. It is shown how the Staude cone equations can be obtained within the framework of the Routh theory.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"76 5","pages":"123 - 129"},"PeriodicalIF":0.3000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rotation of Isosceles Tetrahedron in Central Newtonian Force Field: Staude Cone\",\"authors\":\"A. A. Burov,&nbsp;E. A. Nikonova\",\"doi\":\"10.3103/S0027133021050034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Staude cone is considered in the problem of motion of a homogeneous isosceles tetrahedron in a central Newtonian force field. The nature of the Staude cone degeneracy is studied for the case when an isosceles tetrahedron is close to regular. It is shown how the Staude cone equations can be obtained within the framework of the Routh theory.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"76 5\",\"pages\":\"123 - 129\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133021050034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133021050034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

研究了匀速等腰四面体在中心牛顿力场中的运动问题。研究了等腰四面体近似正则时Staude锥简并的性质。说明了如何在劳斯理论的框架内得到Staude锥方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rotation of Isosceles Tetrahedron in Central Newtonian Force Field: Staude Cone

Rotation of Isosceles Tetrahedron in Central Newtonian Force Field: Staude Cone

The Staude cone is considered in the problem of motion of a homogeneous isosceles tetrahedron in a central Newtonian force field. The nature of the Staude cone degeneracy is studied for the case when an isosceles tetrahedron is close to regular. It is shown how the Staude cone equations can be obtained within the framework of the Routh theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信