Sai Ma, Lili He, Qingjuan Zuo, Guo-rui Zhang, Yifang Guo
{"title":"Canagliflozin可能通过激活AMPK/ pfc -1α/Nrf2信号通路调控HFpEF大鼠的铁下垂","authors":"Sai Ma, Lili He, Qingjuan Zuo, Guo-rui Zhang, Yifang Guo","doi":"10.15212/cvia.2022.0024","DOIUrl":null,"url":null,"abstract":"\nAims: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been found to ameliorate major adverse cardiovascular events in patients with heart failure with preserved ejection fraction (HFpEF), but the exact mechanism is unknown. Ferroptosis is a form of programmed necrosis. Herein, we verified that canagliflozin (CANA) ameliorates heart function in HFpEF rats, partly by regulating ferroptosis, which may be activated by AMPK/PGC-1α/Nrf2 signaling.\n\nMethods: An HFpEF model was established and subjected to CANA treatment. Blood pressure was monitored, and echocardiography was performed at the 12th week. Pathological examination was performed, and expression of ferroptosis-associated proteins and AMPK/PGC-1α/Nrf2 signaling related proteins was detected.\n\nResults: CANA had an antihypertensive effect and increased E/A ratios in HFpEF rats. Myocardial pathology was ameliorated, on the basis of decreased cross-sectional area and intercellular fibrosis. Acyl-CoA synthetase long-chain family member 4 (ACSL4) expression increased, whereas ferritin heavy chain 1 (FTH1) expression decreased in HFpEF rats, which showed iron overload. CANA reversed changes in ACSL4 and FTH1, and decreased iron accumulation, but did not alter glutathione peroxidase 4 (GPX4) expression. The expression of AMPK/PGC-1α/Nrf2 signaling related proteins and heme oxygenase 1 (HO-1) in the HFpEF group decreased but was reverted after CANA treatment.\n\nConclusions: CANA regulates ferroptosis, potentially via activating AMPK/PGC-1α/Nrf2 signaling in HFpEF rats.","PeriodicalId":41559,"journal":{"name":"Cardiovascular Innovations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Canagliflozin Regulates Ferroptosis, Potentially via Activating AMPK/PGC-1α/Nrf2 Signaling in HFpEF Rats\",\"authors\":\"Sai Ma, Lili He, Qingjuan Zuo, Guo-rui Zhang, Yifang Guo\",\"doi\":\"10.15212/cvia.2022.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nAims: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been found to ameliorate major adverse cardiovascular events in patients with heart failure with preserved ejection fraction (HFpEF), but the exact mechanism is unknown. Ferroptosis is a form of programmed necrosis. Herein, we verified that canagliflozin (CANA) ameliorates heart function in HFpEF rats, partly by regulating ferroptosis, which may be activated by AMPK/PGC-1α/Nrf2 signaling.\\n\\nMethods: An HFpEF model was established and subjected to CANA treatment. Blood pressure was monitored, and echocardiography was performed at the 12th week. Pathological examination was performed, and expression of ferroptosis-associated proteins and AMPK/PGC-1α/Nrf2 signaling related proteins was detected.\\n\\nResults: CANA had an antihypertensive effect and increased E/A ratios in HFpEF rats. Myocardial pathology was ameliorated, on the basis of decreased cross-sectional area and intercellular fibrosis. Acyl-CoA synthetase long-chain family member 4 (ACSL4) expression increased, whereas ferritin heavy chain 1 (FTH1) expression decreased in HFpEF rats, which showed iron overload. CANA reversed changes in ACSL4 and FTH1, and decreased iron accumulation, but did not alter glutathione peroxidase 4 (GPX4) expression. The expression of AMPK/PGC-1α/Nrf2 signaling related proteins and heme oxygenase 1 (HO-1) in the HFpEF group decreased but was reverted after CANA treatment.\\n\\nConclusions: CANA regulates ferroptosis, potentially via activating AMPK/PGC-1α/Nrf2 signaling in HFpEF rats.\",\"PeriodicalId\":41559,\"journal\":{\"name\":\"Cardiovascular Innovations and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Innovations and Applications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15212/cvia.2022.0024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Innovations and Applications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15212/cvia.2022.0024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Canagliflozin Regulates Ferroptosis, Potentially via Activating AMPK/PGC-1α/Nrf2 Signaling in HFpEF Rats
Aims: Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been found to ameliorate major adverse cardiovascular events in patients with heart failure with preserved ejection fraction (HFpEF), but the exact mechanism is unknown. Ferroptosis is a form of programmed necrosis. Herein, we verified that canagliflozin (CANA) ameliorates heart function in HFpEF rats, partly by regulating ferroptosis, which may be activated by AMPK/PGC-1α/Nrf2 signaling.
Methods: An HFpEF model was established and subjected to CANA treatment. Blood pressure was monitored, and echocardiography was performed at the 12th week. Pathological examination was performed, and expression of ferroptosis-associated proteins and AMPK/PGC-1α/Nrf2 signaling related proteins was detected.
Results: CANA had an antihypertensive effect and increased E/A ratios in HFpEF rats. Myocardial pathology was ameliorated, on the basis of decreased cross-sectional area and intercellular fibrosis. Acyl-CoA synthetase long-chain family member 4 (ACSL4) expression increased, whereas ferritin heavy chain 1 (FTH1) expression decreased in HFpEF rats, which showed iron overload. CANA reversed changes in ACSL4 and FTH1, and decreased iron accumulation, but did not alter glutathione peroxidase 4 (GPX4) expression. The expression of AMPK/PGC-1α/Nrf2 signaling related proteins and heme oxygenase 1 (HO-1) in the HFpEF group decreased but was reverted after CANA treatment.
Conclusions: CANA regulates ferroptosis, potentially via activating AMPK/PGC-1α/Nrf2 signaling in HFpEF rats.