用偏心透明Couette单元研究粘性流体在自由表面剪切流动下的界面行为

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
P. Thirunavukkarasu, F. Fournier, A. Pignolet, R. Castellani, C. Cohen, E. Peuvrel-Disdier, R. Valette, B. Vergnes
{"title":"用偏心透明Couette单元研究粘性流体在自由表面剪切流动下的界面行为","authors":"P. Thirunavukkarasu, F. Fournier, A. Pignolet, R. Castellani, C. Cohen, E. Peuvrel-Disdier, R. Valette, B. Vergnes","doi":"10.1515/ipp-2022-4261","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, a prototype was developed to observe the flow behavior of viscous fluids under free surface shear and determine an adhesion energy in this flow geometry. The geometry consists of an eccentric Couette cell (outer cylinder radius of 89.5 mm, inner cylinder radius of 43.75 mm and minimal gap of 3 mm) that can be used in two modes, where both cylinders can respectively rotate in the same or opposite directions. Cylinders are horizontal and short relatively to their diameters (30 mm long). Transparent windows allow in-situ flow observations. The design, development, and testing of the prototype with a model viscous fluid (silicone fluid with a 2.2 104 Pa.s Newtonian viscosity) are reported in this paper. The flow behavior of small fluid volumes (fill factor smaller than 15%) was investigated under co- and counter-rotating configurations to determine steady-state flow conditions. Stationary conditions were identified in the counter-rotating mode. The velocity conditions and resulting observations are studied and analysed. However, for the used silicone fluid, the bulk dissipative energy is much larger than the work of adhesive forces in the investigated regimes. The adhesion energy contribution could not be detected for this fluid.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"38 1","pages":"77 - 87"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the interface behavior of a viscous fluid under free surface shear flow using an eccentric transparent Couette cell\",\"authors\":\"P. Thirunavukkarasu, F. Fournier, A. Pignolet, R. Castellani, C. Cohen, E. Peuvrel-Disdier, R. Valette, B. Vergnes\",\"doi\":\"10.1515/ipp-2022-4261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, a prototype was developed to observe the flow behavior of viscous fluids under free surface shear and determine an adhesion energy in this flow geometry. The geometry consists of an eccentric Couette cell (outer cylinder radius of 89.5 mm, inner cylinder radius of 43.75 mm and minimal gap of 3 mm) that can be used in two modes, where both cylinders can respectively rotate in the same or opposite directions. Cylinders are horizontal and short relatively to their diameters (30 mm long). Transparent windows allow in-situ flow observations. The design, development, and testing of the prototype with a model viscous fluid (silicone fluid with a 2.2 104 Pa.s Newtonian viscosity) are reported in this paper. The flow behavior of small fluid volumes (fill factor smaller than 15%) was investigated under co- and counter-rotating configurations to determine steady-state flow conditions. Stationary conditions were identified in the counter-rotating mode. The velocity conditions and resulting observations are studied and analysed. However, for the used silicone fluid, the bulk dissipative energy is much larger than the work of adhesive forces in the investigated regimes. The adhesion energy contribution could not be detected for this fluid.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":\"38 1\",\"pages\":\"77 - 87\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2022-4261\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4261","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,开发了一个原型来观察粘性流体在自由表面剪切下的流动行为,并确定该流动几何形状下的粘附能。几何结构包括一个偏心的Couette电池(外圆柱体半径89.5 mm,内圆柱体半径43.75 mm,最小间隙为3 mm),可以在两种模式下使用,其中两个圆柱体分别可以在相同或相反的方向上旋转。汽缸是水平的,相对于它们的直径(30毫米长)来说是短的。透明窗口允许现场流动观察。设计、开发和测试了一种粘性流体模型(硅胶流体,压力为2.2 104 Pa)。本文报道了牛顿黏度(牛顿黏度)。研究了小体积流体(填充系数小于15%)在共旋转和反旋转配置下的流动特性,以确定稳态流动条件。确定了逆旋转模式下的稳态条件。对速度条件和观测结果进行了研究和分析。然而,对于所使用的有机硅流体,在所研究的制度下,体积耗散能远远大于粘接力的功。无法检测到该流体的粘附能贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the interface behavior of a viscous fluid under free surface shear flow using an eccentric transparent Couette cell
Abstract In the present work, a prototype was developed to observe the flow behavior of viscous fluids under free surface shear and determine an adhesion energy in this flow geometry. The geometry consists of an eccentric Couette cell (outer cylinder radius of 89.5 mm, inner cylinder radius of 43.75 mm and minimal gap of 3 mm) that can be used in two modes, where both cylinders can respectively rotate in the same or opposite directions. Cylinders are horizontal and short relatively to their diameters (30 mm long). Transparent windows allow in-situ flow observations. The design, development, and testing of the prototype with a model viscous fluid (silicone fluid with a 2.2 104 Pa.s Newtonian viscosity) are reported in this paper. The flow behavior of small fluid volumes (fill factor smaller than 15%) was investigated under co- and counter-rotating configurations to determine steady-state flow conditions. Stationary conditions were identified in the counter-rotating mode. The velocity conditions and resulting observations are studied and analysed. However, for the used silicone fluid, the bulk dissipative energy is much larger than the work of adhesive forces in the investigated regimes. The adhesion energy contribution could not be detected for this fluid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信