{"title":"新冠肺炎疫苗误传话题在社交媒体上的情绪及传播特征分析","authors":"M. Daradkeh","doi":"10.4018/ijban.292056","DOIUrl":null,"url":null,"abstract":"This study presents a data analytics framework that aims to analyze topics and sentiments associated with COVID-19 vaccine misinformation in social media. A total of 40,359 tweets related to COVID-19 vaccination were collected between January 2021 and March 2021. Misinformation was detected using multiple predictive machine learning models. Latent Dirichlet Allocation (LDA) topic model was used to identify dominant topics in COVID-19 vaccine misinformation. Sentiment orientation of misinformation was analyzed using a lexicon-based approach. An independent-samples t-test was performed to compare the number of replies, retweets, and likes of misinformation with different sentiment orientations. Based on the data sample, the results show that COVID-19 vaccine misinformation included 21 major topics. Across all misinformation topics, the average number of replies, retweets, and likes of tweets with negative sentiment was 2.26, 2.68, and 3.29 times higher, respectively, than those with positive sentiment.","PeriodicalId":42590,"journal":{"name":"International Journal of Business Analytics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analyzing Sentiments and Diffusion Characteristics of COVID-19 Vaccine Misinformation Topics in Social Media\",\"authors\":\"M. Daradkeh\",\"doi\":\"10.4018/ijban.292056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a data analytics framework that aims to analyze topics and sentiments associated with COVID-19 vaccine misinformation in social media. A total of 40,359 tweets related to COVID-19 vaccination were collected between January 2021 and March 2021. Misinformation was detected using multiple predictive machine learning models. Latent Dirichlet Allocation (LDA) topic model was used to identify dominant topics in COVID-19 vaccine misinformation. Sentiment orientation of misinformation was analyzed using a lexicon-based approach. An independent-samples t-test was performed to compare the number of replies, retweets, and likes of misinformation with different sentiment orientations. Based on the data sample, the results show that COVID-19 vaccine misinformation included 21 major topics. Across all misinformation topics, the average number of replies, retweets, and likes of tweets with negative sentiment was 2.26, 2.68, and 3.29 times higher, respectively, than those with positive sentiment.\",\"PeriodicalId\":42590,\"journal\":{\"name\":\"International Journal of Business Analytics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijban.292056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.292056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
Analyzing Sentiments and Diffusion Characteristics of COVID-19 Vaccine Misinformation Topics in Social Media
This study presents a data analytics framework that aims to analyze topics and sentiments associated with COVID-19 vaccine misinformation in social media. A total of 40,359 tweets related to COVID-19 vaccination were collected between January 2021 and March 2021. Misinformation was detected using multiple predictive machine learning models. Latent Dirichlet Allocation (LDA) topic model was used to identify dominant topics in COVID-19 vaccine misinformation. Sentiment orientation of misinformation was analyzed using a lexicon-based approach. An independent-samples t-test was performed to compare the number of replies, retweets, and likes of misinformation with different sentiment orientations. Based on the data sample, the results show that COVID-19 vaccine misinformation included 21 major topics. Across all misinformation topics, the average number of replies, retweets, and likes of tweets with negative sentiment was 2.26, 2.68, and 3.29 times higher, respectively, than those with positive sentiment.
期刊介绍:
The main objective of the International Journal of Business Analytics (IJBAN) is to advance the next frontier of decision sciences and provide an international forum for practitioners and researchers in business and governmental organizations—as well as information technology professionals, software developers, and vendors—to exchange, share, and present useful and innovative ideas and work. The journal encourages exploration of different models, methods, processes, and principles in profitable and actionable manners.