通过含有不适当成分的混合物检测异常值

IF 0.6 Q4 STATISTICS & PROBABILITY
P. N. Inverardi, E. Taufer
{"title":"通过含有不适当成分的混合物检测异常值","authors":"P. N. Inverardi, E. Taufer","doi":"10.1285/I20705948V13N1P146","DOIUrl":null,"url":null,"abstract":"The  paper  investigates the use of a finite  mixture model with an additional uniform density for outlier detection and robust estimation.  The main contribution of this paper lies in the  analysis of the properties of the improper component and the introduction of a modified EM algorithm  which, beyond providing the maximum likelihood estimates of the mixture parameters, endogenously provides a numerical value for the density of the uniform distribution used for the improper component. The mixing proportion of outliers may be known or unknown.  Applications to robust estimation and outlier detection will be discussed with particular attention to the normal mixture case.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"146-163"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Outlier detection through mixtures with an improper component\",\"authors\":\"P. N. Inverardi, E. Taufer\",\"doi\":\"10.1285/I20705948V13N1P146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The  paper  investigates the use of a finite  mixture model with an additional uniform density for outlier detection and robust estimation.  The main contribution of this paper lies in the  analysis of the properties of the improper component and the introduction of a modified EM algorithm  which, beyond providing the maximum likelihood estimates of the mixture parameters, endogenously provides a numerical value for the density of the uniform distribution used for the improper component. The mixing proportion of outliers may be known or unknown.  Applications to robust estimation and outlier detection will be discussed with particular attention to the normal mixture case.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"13 1\",\"pages\":\"146-163\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V13N1P146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N1P146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了使用具有额外均匀密度的有限混合模型进行异常值检测和鲁棒估计。本文的主要贡献在于分析了不适当成分的性质,并引入了一种改进的EM算法,该算法除了提供混合物参数的最大似然估计外,还内生地为不适当成分使用的均匀分布密度提供了一个数值。异常值的混合比例可能是已知的,也可能是未知的。将特别关注正态混合情况来讨论稳健估计和异常值检测的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier detection through mixtures with an improper component
The  paper  investigates the use of a finite  mixture model with an additional uniform density for outlier detection and robust estimation.  The main contribution of this paper lies in the  analysis of the properties of the improper component and the introduction of a modified EM algorithm  which, beyond providing the maximum likelihood estimates of the mixture parameters, endogenously provides a numerical value for the density of the uniform distribution used for the improper component. The mixing proportion of outliers may be known or unknown.  Applications to robust estimation and outlier detection will be discussed with particular attention to the normal mixture case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信