{"title":"卷积神经网络在眼底图像语义分割中的应用","authors":"Ričardas Toliušis, O. Kurasova, J. Bernatavičienė","doi":"10.15388/im.2019.85.20","DOIUrl":null,"url":null,"abstract":"The article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish eye vessels, optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed by changes and anomalies of vesssels and optical disk. For semantic segmentation convolutional neural networks, especially U-Net architecture, are well suited. Recently a number of U-Net modifications have been developed that deliver excellent performance results.","PeriodicalId":37230,"journal":{"name":"Informacijos Mokslai","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks\",\"authors\":\"Ričardas Toliušis, O. Kurasova, J. Bernatavičienė\",\"doi\":\"10.15388/im.2019.85.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish eye vessels, optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed by changes and anomalies of vesssels and optical disk. For semantic segmentation convolutional neural networks, especially U-Net architecture, are well suited. Recently a number of U-Net modifications have been developed that deliver excellent performance results.\",\"PeriodicalId\":37230,\"journal\":{\"name\":\"Informacijos Mokslai\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacijos Mokslai\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/im.2019.85.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacijos Mokslai","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/im.2019.85.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Semantic Segmentation of Eye Fundus Images Using Convolutional Neural Networks
The article reviews the problems of eye bottom fundus analysis and semantic segmentation algorithms used to distinguish eye vessels, optical disk. Various diseases, such as glaucoma, hypertension, diabetic retinopathy, macular degeneration, etc., can be diagnosed by changes and anomalies of vesssels and optical disk. For semantic segmentation convolutional neural networks, especially U-Net architecture, are well suited. Recently a number of U-Net modifications have been developed that deliver excellent performance results.