ω -连续条件下方程六阶格式的扩展收敛性

Q3 Mathematics
Samundra Regmi, Christopher I. Argyros, I. Argyros, S. George
{"title":"ω -连续条件下方程六阶格式的扩展收敛性","authors":"Samundra Regmi, Christopher I. Argyros, I. Argyros, S. George","doi":"10.2478/mjpaa-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract The applicability of an efficient sixth convergence order scheme is extended for solving Banach space valued equations. In previous works, the seventh derivative has been used not appearing on the scheme. But we use only the first derivative that appears on the scheme. Moreover, bounds on the error distances and results on the uniqueness of the solution are provided (not given in earlier works) based on ω–continuity conditions. Numerical examples complete this article.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"92 - 101"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extended convergence of a sixth order scheme for solving equations under ω–continuity conditions\",\"authors\":\"Samundra Regmi, Christopher I. Argyros, I. Argyros, S. George\",\"doi\":\"10.2478/mjpaa-2022-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The applicability of an efficient sixth convergence order scheme is extended for solving Banach space valued equations. In previous works, the seventh derivative has been used not appearing on the scheme. But we use only the first derivative that appears on the scheme. Moreover, bounds on the error distances and results on the uniqueness of the solution are provided (not given in earlier works) based on ω–continuity conditions. Numerical examples complete this article.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"92 - 101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

摘要推广了一种高效的六阶收敛格式在求解Banach空间值方程中的适用性。在以前的作品中,七阶导数被使用,而没有出现在方案中。但我们只使用方案中出现的一阶导数。此外,基于ω-连续性条件,提供了误差距离的边界和解的唯一性的结果(在早期的工作中没有给出)。数值例子完成了这篇文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended convergence of a sixth order scheme for solving equations under ω–continuity conditions
Abstract The applicability of an efficient sixth convergence order scheme is extended for solving Banach space valued equations. In previous works, the seventh derivative has been used not appearing on the scheme. But we use only the first derivative that appears on the scheme. Moreover, bounds on the error distances and results on the uniqueness of the solution are provided (not given in earlier works) based on ω–continuity conditions. Numerical examples complete this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信