H. Dimou, Y. Aribou, S. Kabbaj
{"title":"Banach空间中的广义泛函不等式","authors":"H. Dimou, Y. Aribou, S. Kabbaj","doi":"10.2478/mjpaa-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we solve and investigate the generalized additive functional inequalities ‖ F(∑i=1nxi)-∑i=1nF(xi) ‖≤‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖ \\left\\| {F\\left( {\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - \\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| \\le \\left\\| {F\\left( {{1 \\over n}\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - {1 \\over n}\\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| and ‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖≤‖ F(∑i=1nxi)-∑i=1nF(xi) ‖. \\left\\| {F\\left( {{1 \\over n}\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - {1 \\over n}\\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| \\le \\left\\| {F\\left( {\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - \\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\|. Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"337 - 349"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized functional inequalities in Banach spaces\",\"authors\":\"H. Dimou, Y. Aribou, S. Kabbaj\",\"doi\":\"10.2478/mjpaa-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we solve and investigate the generalized additive functional inequalities ‖ F(∑i=1nxi)-∑i=1nF(xi) ‖≤‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖ \\\\left\\\\| {F\\\\left( {\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - \\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\| \\\\le \\\\left\\\\| {F\\\\left( {{1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - {1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\| and ‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖≤‖ F(∑i=1nxi)-∑i=1nF(xi) ‖. \\\\left\\\\| {F\\\\left( {{1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - {1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\| \\\\le \\\\left\\\\| {F\\\\left( {\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - \\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\|. Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"7 1\",\"pages\":\"337 - 349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0