Banach空间中的广义泛函不等式

Q3 Mathematics
H. Dimou, Y. Aribou, S. Kabbaj
{"title":"Banach空间中的广义泛函不等式","authors":"H. Dimou, Y. Aribou, S. Kabbaj","doi":"10.2478/mjpaa-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we solve and investigate the generalized additive functional inequalities ‖ F(∑i=1nxi)-∑i=1nF(xi) ‖≤‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖ \\left\\| {F\\left( {\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - \\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| \\le \\left\\| {F\\left( {{1 \\over n}\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - {1 \\over n}\\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| and ‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖≤‖ F(∑i=1nxi)-∑i=1nF(xi) ‖. \\left\\| {F\\left( {{1 \\over n}\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - {1 \\over n}\\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\| \\le \\left\\| {F\\left( {\\sum\\limits_{i = 1}^n {{x_i}} } \\right) - \\sum\\limits_{i = 1}^n {F\\left( {{x_i}} \\right)} } \\right\\|. Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"337 - 349"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized functional inequalities in Banach spaces\",\"authors\":\"H. Dimou, Y. Aribou, S. Kabbaj\",\"doi\":\"10.2478/mjpaa-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we solve and investigate the generalized additive functional inequalities ‖ F(∑i=1nxi)-∑i=1nF(xi) ‖≤‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖ \\\\left\\\\| {F\\\\left( {\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - \\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\| \\\\le \\\\left\\\\| {F\\\\left( {{1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - {1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\| and ‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖≤‖ F(∑i=1nxi)-∑i=1nF(xi) ‖. \\\\left\\\\| {F\\\\left( {{1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - {1 \\\\over n}\\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\| \\\\le \\\\left\\\\| {F\\\\left( {\\\\sum\\\\limits_{i = 1}^n {{x_i}} } \\\\right) - \\\\sum\\\\limits_{i = 1}^n {F\\\\left( {{x_i}} \\\\right)} } \\\\right\\\\|. Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"7 1\",\"pages\":\"337 - 349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文求解并研究了广义可加泛函不等式‖F(∑i=1nxi)—∑i=1nF(xi)‖≤‖F(1n∑i=1nxi)—1n∑i=1nF(xi)‖ \left\ b| {f\left( {\sum\limits_{I = 1}^n {{x_i}} } \right)—— \sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\ b| \le \left\ b| {f\left( {{1 \over n}\sum\limits_{I = 1}^n {{x_i}} } \right)—— {1 \over n}\sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\|和‖F(1n∑i=1nxi)-1n∑i=1nF(xi)‖≤‖F(∑i=1nxi)-∑i=1nF(xi)‖。 \left\ b| {f\left( {{1 \over n}\sum\limits_{I = 1}^n {{x_i}} } \right)—— {1 \over n}\sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\ b| \le \left\ b| {f\left( {\sum\limits_{I = 1}^n {{x_i}} } \right)—— \sum\limits_{I = 1}^n {f\left( {{x_i}} \right)} } \right\|。利用直接方法证明了Banach空间中的(0.1)和非archimid Banach空间中的(0.2)泛函不等式的Hyers-Ulam稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized functional inequalities in Banach spaces
Abstract In this paper, we solve and investigate the generalized additive functional inequalities ‖ F(∑i=1nxi)-∑i=1nF(xi) ‖≤‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖ \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| and ‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖≤‖ F(∑i=1nxi)-∑i=1nF(xi) ‖. \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\|. Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信