三维随机Leray-α模型解的渐近性质

IF 0.3 Q4 STATISTICS & PROBABILITY
N. Thanh, T. Tuan
{"title":"三维随机Leray-α模型解的渐近性质","authors":"N. Thanh, T. Tuan","doi":"10.1515/rose-2022-2077","DOIUrl":null,"url":null,"abstract":"Abstract We consider the three-dimensional stochastic Leray-α model with homogeneous Dirichlet boundary conditions and infinite-dimensional Wiener process. We first study the mean square and pathwise exponential stability of a stationary solution to the model. Then we show that one can stabilize an unstable stationary solution by using a multiplicative Itô noise of sufficient intensity or a linear internal feedback control with support large enough.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"137 - 148"},"PeriodicalIF":0.3000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic behavior of solutions to the three-dimensional stochastic Leray-α model\",\"authors\":\"N. Thanh, T. Tuan\",\"doi\":\"10.1515/rose-2022-2077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the three-dimensional stochastic Leray-α model with homogeneous Dirichlet boundary conditions and infinite-dimensional Wiener process. We first study the mean square and pathwise exponential stability of a stationary solution to the model. Then we show that one can stabilize an unstable stationary solution by using a multiplicative Itô noise of sufficient intensity or a linear internal feedback control with support large enough.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"30 1\",\"pages\":\"137 - 148\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2022-2077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

考虑具有齐次Dirichlet边界条件和无限维Wiener过程的三维随机Leray-α模型。我们首先研究了模型平稳解的均方稳定性和路径指数稳定性。然后,我们证明可以通过使用足够强度的乘性Itô噪声或支持足够大的线性内反馈控制来稳定不稳定的平稳解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of solutions to the three-dimensional stochastic Leray-α model
Abstract We consider the three-dimensional stochastic Leray-α model with homogeneous Dirichlet boundary conditions and infinite-dimensional Wiener process. We first study the mean square and pathwise exponential stability of a stationary solution to the model. Then we show that one can stabilize an unstable stationary solution by using a multiplicative Itô noise of sufficient intensity or a linear internal feedback control with support large enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信