遗传元件拷贝数变异的二倍体群体模型

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
P. Pfaffelhuber, A. Wakolbinger
{"title":"遗传元件拷贝数变异的二倍体群体模型","authors":"P. Pfaffelhuber, A. Wakolbinger","doi":"10.1214/23-ejp934","DOIUrl":null,"url":null,"abstract":"We study the following model for a diploid population of constant size $N$: Every individual carries a random number of (genetic) elements. Upon a reproduction event each of the two parents passes each element independently with probability $\\tfrac 12$ on to the offspring. We study the process $X^N = (X^N(1), X^N(2),...)$, where $X_t^N(k)$ is the frequency of individuals at time $t$ that carry $k$ elements, and prove convergence (in some weak sense) of $X^N$ jointly with its empirical first moment $Z^N$ to the ``slow-fast'' system $(Z,X)$, where $X_t = \\text{Poi}(Z_t)$ and $Z$ evolves according to a critical Feller branching process. We discuss heuristics explaining this finding and some extensions and limitations.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diploid population model for copy number variation of genetic elements\",\"authors\":\"P. Pfaffelhuber, A. Wakolbinger\",\"doi\":\"10.1214/23-ejp934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following model for a diploid population of constant size $N$: Every individual carries a random number of (genetic) elements. Upon a reproduction event each of the two parents passes each element independently with probability $\\\\tfrac 12$ on to the offspring. We study the process $X^N = (X^N(1), X^N(2),...)$, where $X_t^N(k)$ is the frequency of individuals at time $t$ that carry $k$ elements, and prove convergence (in some weak sense) of $X^N$ jointly with its empirical first moment $Z^N$ to the ``slow-fast'' system $(Z,X)$, where $X_t = \\\\text{Poi}(Z_t)$ and $Z$ evolves according to a critical Feller branching process. We discuss heuristics explaining this finding and some extensions and limitations.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp934\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp934","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以下恒定大小$N$的二倍体种群的模型:每个个体都携带随机数目的(遗传)元素。在繁殖事件中,两个亲本中的每一个都以概率$\trac 12$独立地将每个元素传递给后代。我们研究了过程$X^N=(X^N(1),X^N(2),…)$,其中$X_t^N(k)$是在时间$t$携带$k$元素的个体的频率,并证明$X^N$与其经验第一矩$Z^N$联合收敛于“慢-快”系统$(Z,X)$,其中$X_t=\text{Poi}(Z_t)$和$Z$根据关键的Feller分支过程演化。我们讨论了解释这一发现的启发式方法以及一些扩展和限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A diploid population model for copy number variation of genetic elements
We study the following model for a diploid population of constant size $N$: Every individual carries a random number of (genetic) elements. Upon a reproduction event each of the two parents passes each element independently with probability $\tfrac 12$ on to the offspring. We study the process $X^N = (X^N(1), X^N(2),...)$, where $X_t^N(k)$ is the frequency of individuals at time $t$ that carry $k$ elements, and prove convergence (in some weak sense) of $X^N$ jointly with its empirical first moment $Z^N$ to the ``slow-fast'' system $(Z,X)$, where $X_t = \text{Poi}(Z_t)$ and $Z$ evolves according to a critical Feller branching process. We discuss heuristics explaining this finding and some extensions and limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信