具有电解槽和微型燃气轮机的孤岛微集成能源系统的协调控制

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Huaren Wu
{"title":"具有电解槽和微型燃气轮机的孤岛微集成能源系统的协调控制","authors":"Huaren Wu","doi":"10.1155/2022/6195807","DOIUrl":null,"url":null,"abstract":"Microintegrated energy systems (MIESs) can be disconnected from power distribution systems during power system faults. This paper develops a control scheme for an islanded MIES. The VSC inverter controls the AC bus voltage and frequency using a modified AC voltage regulator and a modified frequency regulator. The control structures of the power-to-gas and PMSG-based microturbine generator (MTG) systems are improved. Renewable generation always runs at the maximum power point. The surplus renewable energy in the MIES can be converted into natural gas using power-to-gas, and the MIES can make full use of renewable energy. The proposed coordinated control scheme of the electrolyzer and the supercapacitor can achieve a power balance of the islanded MIES and reduce the DC-link voltage fluctuation. A micro-gas turbine can provide electric energy to the load and enhance distribution system resilience. A coordinated control scheme of the MTG and the supercapacitor is developed to improve MIES operation. A feature of this paper is the research on fault ride-through of the islanded MIES. A fault ride-through strategy is proposed, where the AC voltage of the VSC inverter is reduced to limit the short-circuit current during AC system faults. Islanded MIES simulations are conducted in a MATLAB/Simulink environment to test the control scheme. The simulation results verify the effectiveness of the control scheme during normal operation and failure.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinated Control of an Islanded Microintegrated Energy System with an Electrolyzer and Micro-Gas Turbine\",\"authors\":\"Huaren Wu\",\"doi\":\"10.1155/2022/6195807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microintegrated energy systems (MIESs) can be disconnected from power distribution systems during power system faults. This paper develops a control scheme for an islanded MIES. The VSC inverter controls the AC bus voltage and frequency using a modified AC voltage regulator and a modified frequency regulator. The control structures of the power-to-gas and PMSG-based microturbine generator (MTG) systems are improved. Renewable generation always runs at the maximum power point. The surplus renewable energy in the MIES can be converted into natural gas using power-to-gas, and the MIES can make full use of renewable energy. The proposed coordinated control scheme of the electrolyzer and the supercapacitor can achieve a power balance of the islanded MIES and reduce the DC-link voltage fluctuation. A micro-gas turbine can provide electric energy to the load and enhance distribution system resilience. A coordinated control scheme of the MTG and the supercapacitor is developed to improve MIES operation. A feature of this paper is the research on fault ride-through of the islanded MIES. A fault ride-through strategy is proposed, where the AC voltage of the VSC inverter is reduced to limit the short-circuit current during AC system faults. Islanded MIES simulations are conducted in a MATLAB/Simulink environment to test the control scheme. The simulation results verify the effectiveness of the control scheme during normal operation and failure.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6195807\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/6195807","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

当电力系统发生故障时,微集成能源系统可以与配电系统断开连接。本文提出了一种孤岛型密斯的控制方案。该VSC逆变器使用改进的交流稳压器和改进的频率稳压器控制交流母线电压和频率。对电转气和永磁同步电动机微汽轮发电机(MTG)系统的控制结构进行了改进。可再生能源发电总是在最大功率点运行。密斯中剩余的可再生能源可以通过电转气的方式转化为天然气,密斯可以充分利用可再生能源。所提出的电解槽与超级电容器协调控制方案可以实现孤岛式MIES的功率平衡,减小直流链路电压波动。微型燃气轮机可以为负荷提供电能,增强配电系统的弹性。提出了一种MTG和超级电容器的协调控制方案,以改善密斯的运行。本文的一个特点是对孤岛式密斯的故障穿越进行了研究。提出了一种故障穿越策略,通过降低VSC逆变器的交流电压来限制交流系统故障时的短路电流。在MATLAB/Simulink环境下进行孤岛式密斯仿真,对控制方案进行了验证。仿真结果验证了该控制方案在正常运行和故障情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinated Control of an Islanded Microintegrated Energy System with an Electrolyzer and Micro-Gas Turbine
Microintegrated energy systems (MIESs) can be disconnected from power distribution systems during power system faults. This paper develops a control scheme for an islanded MIES. The VSC inverter controls the AC bus voltage and frequency using a modified AC voltage regulator and a modified frequency regulator. The control structures of the power-to-gas and PMSG-based microturbine generator (MTG) systems are improved. Renewable generation always runs at the maximum power point. The surplus renewable energy in the MIES can be converted into natural gas using power-to-gas, and the MIES can make full use of renewable energy. The proposed coordinated control scheme of the electrolyzer and the supercapacitor can achieve a power balance of the islanded MIES and reduce the DC-link voltage fluctuation. A micro-gas turbine can provide electric energy to the load and enhance distribution system resilience. A coordinated control scheme of the MTG and the supercapacitor is developed to improve MIES operation. A feature of this paper is the research on fault ride-through of the islanded MIES. A fault ride-through strategy is proposed, where the AC voltage of the VSC inverter is reduced to limit the short-circuit current during AC system faults. Islanded MIES simulations are conducted in a MATLAB/Simulink environment to test the control scheme. The simulation results verify the effectiveness of the control scheme during normal operation and failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信