流动通过便携式防病毒UV-C光学外壳与防护口罩一起使用

IF 1.8 4区 物理与天体物理 Q3 OPTICS
O. Selimoglu
{"title":"流动通过便携式防病毒UV-C光学外壳与防护口罩一起使用","authors":"O. Selimoglu","doi":"10.1155/2021/7427717","DOIUrl":null,"url":null,"abstract":"UV-C light is an important disinfection tool against airborne viruses, while also being harmful if the light reaches the human skin. Body-attached reflective flow-through optical enclosures can be used for isolating the UV-C light from the user as well as elevating the irradiance level. In this study, we explain why air-sterilizing light enclosures are more effective than the expectations by introducing a dose multiplication factor of 4. As a result of omnidirectional illumination, air sterilization becomes more effective than surface disinfection if similar irradiance levels are measured from the enclosure wall. The methodology is explained by the design of a portable enclosure device primarily targeting the COVID-19 virus, and disinfection effectiveness better than 99.5% is demonstrated by biological tests.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-Through Portable Antivirus UV-C Optical Enclosures to be Used with Protective Masks\",\"authors\":\"O. Selimoglu\",\"doi\":\"10.1155/2021/7427717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UV-C light is an important disinfection tool against airborne viruses, while also being harmful if the light reaches the human skin. Body-attached reflective flow-through optical enclosures can be used for isolating the UV-C light from the user as well as elevating the irradiance level. In this study, we explain why air-sterilizing light enclosures are more effective than the expectations by introducing a dose multiplication factor of 4. As a result of omnidirectional illumination, air sterilization becomes more effective than surface disinfection if similar irradiance levels are measured from the enclosure wall. The methodology is explained by the design of a portable enclosure device primarily targeting the COVID-19 virus, and disinfection effectiveness better than 99.5% is demonstrated by biological tests.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/7427717\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/7427717","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

UV-C光是对抗空气中病毒的重要消毒工具,但如果光线照射到人体皮肤,也会对人体有害。身体附加的反射流通过光学外壳可用于隔离来自用户的UV-C光,并提高辐照度水平。在这项研究中,我们通过引入4的剂量倍增因子来解释为什么空气灭菌光罩比预期的更有效。由于全向照明,如果从围护墙测量相似的辐照水平,空气消毒比表面消毒更有效。该方法通过设计一种主要针对COVID-19病毒的便携式封闭装置来解释,并通过生物试验证明消毒效果优于99.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow-Through Portable Antivirus UV-C Optical Enclosures to be Used with Protective Masks
UV-C light is an important disinfection tool against airborne viruses, while also being harmful if the light reaches the human skin. Body-attached reflective flow-through optical enclosures can be used for isolating the UV-C light from the user as well as elevating the irradiance level. In this study, we explain why air-sterilizing light enclosures are more effective than the expectations by introducing a dose multiplication factor of 4. As a result of omnidirectional illumination, air sterilization becomes more effective than surface disinfection if similar irradiance levels are measured from the enclosure wall. The methodology is explained by the design of a portable enclosure device primarily targeting the COVID-19 virus, and disinfection effectiveness better than 99.5% is demonstrated by biological tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信