同迹结的构造注释

Pub Date : 2020-10-26 DOI:10.32917/h2021005
Keiji Tagami
{"title":"同迹结的构造注释","authors":"Keiji Tagami","doi":"10.32917/h2021005","DOIUrl":null,"url":null,"abstract":"The $m$-trace of a knot is the $4$-manifold obtained from $\\mathbf{B}^4$ by attaching a $2$-handle along the knot with $m$-framing. In 2015, Abe, Jong, Luecke and Osoinach introduced a technique to construct infinitely many knots with the same $m$-trace, which is called the operation $(\\ast m)$. In this paper, we prove that their technique can be explained in terms of Gompf and Miyazaki's dualizable pattern. In addition, we show that the family of knots admitting the same $4$-surgery given by Teragaito can be explained by the operation $(\\ast m)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Notes on constructions of knots with the same trace\",\"authors\":\"Keiji Tagami\",\"doi\":\"10.32917/h2021005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $m$-trace of a knot is the $4$-manifold obtained from $\\\\mathbf{B}^4$ by attaching a $2$-handle along the knot with $m$-framing. In 2015, Abe, Jong, Luecke and Osoinach introduced a technique to construct infinitely many knots with the same $m$-trace, which is called the operation $(\\\\ast m)$. In this paper, we prove that their technique can be explained in terms of Gompf and Miyazaki's dualizable pattern. In addition, we show that the family of knots admitting the same $4$-surgery given by Teragaito can be explained by the operation $(\\\\ast m)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2021005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2021005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

结的$m$-迹是从$\mathbf{B}^4$获得的$4$-流形,方法是沿结连接一个带有$m$框架的$2$-柄。2015年,Abe、Jong、Luecke和Osoinach引入了一种技术,用相同的$$$-trace构造无限多个结,称为运算$[上百万]$。在本文中,我们证明了他们的技术可以用贡普夫和宫崎骏的可对偶图案来解释。此外,我们还表明,接受Teragaito提供的相同$4$-手术的结家族可以用手术$(\ast m)$来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Notes on constructions of knots with the same trace
The $m$-trace of a knot is the $4$-manifold obtained from $\mathbf{B}^4$ by attaching a $2$-handle along the knot with $m$-framing. In 2015, Abe, Jong, Luecke and Osoinach introduced a technique to construct infinitely many knots with the same $m$-trace, which is called the operation $(\ast m)$. In this paper, we prove that their technique can be explained in terms of Gompf and Miyazaki's dualizable pattern. In addition, we show that the family of knots admitting the same $4$-surgery given by Teragaito can be explained by the operation $(\ast m)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信