{"title":"具有Neumann条件的严格(n−1)-凸函数的monge - ampante方程","authors":"B. Deng","doi":"10.4208/jms.v53n1.20.04","DOIUrl":null,"url":null,"abstract":"A $C^2$ function on $\\mathbb{R}^n$ is called strictly $(n-1)$-convex if the sum of any $n-1$ eigenvalues of its Hessian is positive. In this paper, we establish a global $C^2$ estimates to the Monge-Amp\\`ere equation for strictly $(n-1)$-convex functions with Neumann condition. By the method of continuity, we prove an existence theorem for strictly $(n-1)$-convex solutions of the Neumann problems.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Monge-Ampère Equation for Strictly (n−1)-convex Functions with Neumann Condition\",\"authors\":\"B. Deng\",\"doi\":\"10.4208/jms.v53n1.20.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A $C^2$ function on $\\\\mathbb{R}^n$ is called strictly $(n-1)$-convex if the sum of any $n-1$ eigenvalues of its Hessian is positive. In this paper, we establish a global $C^2$ estimates to the Monge-Amp\\\\`ere equation for strictly $(n-1)$-convex functions with Neumann condition. By the method of continuity, we prove an existence theorem for strictly $(n-1)$-convex solutions of the Neumann problems.\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v53n1.20.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v53n1.20.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Monge-Ampère Equation for Strictly (n−1)-convex Functions with Neumann Condition
A $C^2$ function on $\mathbb{R}^n$ is called strictly $(n-1)$-convex if the sum of any $n-1$ eigenvalues of its Hessian is positive. In this paper, we establish a global $C^2$ estimates to the Monge-Amp\`ere equation for strictly $(n-1)$-convex functions with Neumann condition. By the method of continuity, we prove an existence theorem for strictly $(n-1)$-convex solutions of the Neumann problems.