{"title":"有限链上保序部分等距的某些半群的秩","authors":"B. Ali, M. A. Jada, M. M. Zubairu","doi":"10.22124/JART.2019.10875.1109","DOIUrl":null,"url":null,"abstract":"Let $X_n={1,2,ldots,n}$ be a finite chain, $mathcal{ODP}_{n}$ be the semigroup of order-preserving partial isometries on $X_n$ and $N$ be the set of all nilpotents in $mathcal{ODP}_{n}$. In this work, we study the nilpotents in $mathcal{ODP}_{n}$ and investigate the ranks of two subsemigroups of $mathcal{ODP}_{n}$; the nilpotent generatedsubsemigroup $langle Nrangle$ and the subsemigroup ~$L(n,r)= { alpha in mathcal{ODP}_{n} : |im~alpha|leq r}$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"6 1","pages":"15-33"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the ranks of certain semigroups of order-preserving partial isometries of a finite chain\",\"authors\":\"B. Ali, M. A. Jada, M. M. Zubairu\",\"doi\":\"10.22124/JART.2019.10875.1109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X_n={1,2,ldots,n}$ be a finite chain, $mathcal{ODP}_{n}$ be the semigroup of order-preserving partial isometries on $X_n$ and $N$ be the set of all nilpotents in $mathcal{ODP}_{n}$. In this work, we study the nilpotents in $mathcal{ODP}_{n}$ and investigate the ranks of two subsemigroups of $mathcal{ODP}_{n}$; the nilpotent generatedsubsemigroup $langle Nrangle$ and the subsemigroup ~$L(n,r)= { alpha in mathcal{ODP}_{n} : |im~alpha|leq r}$.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"6 1\",\"pages\":\"15-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2019.10875.1109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2019.10875.1109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On the ranks of certain semigroups of order-preserving partial isometries of a finite chain
Let $X_n={1,2,ldots,n}$ be a finite chain, $mathcal{ODP}_{n}$ be the semigroup of order-preserving partial isometries on $X_n$ and $N$ be the set of all nilpotents in $mathcal{ODP}_{n}$. In this work, we study the nilpotents in $mathcal{ODP}_{n}$ and investigate the ranks of two subsemigroups of $mathcal{ODP}_{n}$; the nilpotent generatedsubsemigroup $langle Nrangle$ and the subsemigroup ~$L(n,r)= { alpha in mathcal{ODP}_{n} : |im~alpha|leq r}$.