Recheal Naa, Dedei Armah, Z. H. Ning, M. Anokye, Y. Twumasi, D. B. Frimpong, A. Asare-Ansah, P. Loh, F. Owusu
{"title":"利用遥感技术探测德克萨斯州萨姆休斯顿国家森林的森林覆盖变化","authors":"Recheal Naa, Dedei Armah, Z. H. Ning, M. Anokye, Y. Twumasi, D. B. Frimpong, A. Asare-Ansah, P. Loh, F. Owusu","doi":"10.5194/isprs-archives-xlviii-m-3-2023-15-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The Sam Houston National Forest is a large, forested area in Texas that has experienced significant land-use changes over the past few decades. The study area replicates plentiful climatic, physiographic, and edaphic differences in the country and this forest faces a serious problem of degradation and disturbance of different nature. In this study, we utilized remote sensing technology specifically Landsat 4 ETM and Landsat 8 from USGS Earth Explorer with spatial resolution 30 m, to analyze forest cover change in Sam Houston National Forest from 2001 to 2020. We also employed the Hansen Global Forest Cover Data from the Google Earth Engine Catalogue to assess the forest cover loss and gain within the study period. Also, the i-Tree software was used to estimate carbon sequestration in the forest and assess the potential benefits of forest management practices. Results of the study showed that the Sam Houston National Forest has experienced a net loss of forest cover over the past few decades, primarily due to agricultural expansion and urbanization. However, the forest has also shown signs of regrowth and recovery in certain areas, highlighting the potential for effective forest management practices to promote carbon sequestration and conservation. Overall, our study highlights the importance of remote sensing technology for understanding forest cover change and its implications for carbon sequestration and climate change mitigation.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USING REMOTE SENSING TO DETECT FOREST COVER CHANGE IN SAM HOUSTON NATIONAL FOREST, TEXAS\",\"authors\":\"Recheal Naa, Dedei Armah, Z. H. Ning, M. Anokye, Y. Twumasi, D. B. Frimpong, A. Asare-Ansah, P. Loh, F. Owusu\",\"doi\":\"10.5194/isprs-archives-xlviii-m-3-2023-15-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Sam Houston National Forest is a large, forested area in Texas that has experienced significant land-use changes over the past few decades. The study area replicates plentiful climatic, physiographic, and edaphic differences in the country and this forest faces a serious problem of degradation and disturbance of different nature. In this study, we utilized remote sensing technology specifically Landsat 4 ETM and Landsat 8 from USGS Earth Explorer with spatial resolution 30 m, to analyze forest cover change in Sam Houston National Forest from 2001 to 2020. We also employed the Hansen Global Forest Cover Data from the Google Earth Engine Catalogue to assess the forest cover loss and gain within the study period. Also, the i-Tree software was used to estimate carbon sequestration in the forest and assess the potential benefits of forest management practices. Results of the study showed that the Sam Houston National Forest has experienced a net loss of forest cover over the past few decades, primarily due to agricultural expansion and urbanization. However, the forest has also shown signs of regrowth and recovery in certain areas, highlighting the potential for effective forest management practices to promote carbon sequestration and conservation. Overall, our study highlights the importance of remote sensing technology for understanding forest cover change and its implications for carbon sequestration and climate change mitigation.\\n\",\"PeriodicalId\":30634,\"journal\":{\"name\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-15-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-15-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
USING REMOTE SENSING TO DETECT FOREST COVER CHANGE IN SAM HOUSTON NATIONAL FOREST, TEXAS
Abstract. The Sam Houston National Forest is a large, forested area in Texas that has experienced significant land-use changes over the past few decades. The study area replicates plentiful climatic, physiographic, and edaphic differences in the country and this forest faces a serious problem of degradation and disturbance of different nature. In this study, we utilized remote sensing technology specifically Landsat 4 ETM and Landsat 8 from USGS Earth Explorer with spatial resolution 30 m, to analyze forest cover change in Sam Houston National Forest from 2001 to 2020. We also employed the Hansen Global Forest Cover Data from the Google Earth Engine Catalogue to assess the forest cover loss and gain within the study period. Also, the i-Tree software was used to estimate carbon sequestration in the forest and assess the potential benefits of forest management practices. Results of the study showed that the Sam Houston National Forest has experienced a net loss of forest cover over the past few decades, primarily due to agricultural expansion and urbanization. However, the forest has also shown signs of regrowth and recovery in certain areas, highlighting the potential for effective forest management practices to promote carbon sequestration and conservation. Overall, our study highlights the importance of remote sensing technology for understanding forest cover change and its implications for carbon sequestration and climate change mitigation.