利用对数阿贝尔变体扩展半稳定阿贝尔变体的有限子群格式

IF 0.5 4区 数学 Q3 MATHEMATICS
Heer Zhao
{"title":"利用对数阿贝尔变体扩展半稳定阿贝尔变体的有限子群格式","authors":"Heer Zhao","doi":"10.1215/21562261-2019-0049","DOIUrl":null,"url":null,"abstract":"For a semi-stable abelian variety A_K over a complete discrete valuation field K, we show that every finite subgroup scheme of A_K extends to a log finite flat group scheme over the valuation ring of K endowed with the canonical log structure. To achieve this, we first prove that every weak log abelian variety over an fs log scheme with its underlying scheme locally noetherian, is a sheaf for the Kummer flat topology, which answers a question of Chikara Nakayama. We also give several equivalent conditions defining isogenies of log abelian varieties.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extending finite-subgroup schemes of semistable abelian varieties via log-abelian varieties\",\"authors\":\"Heer Zhao\",\"doi\":\"10.1215/21562261-2019-0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a semi-stable abelian variety A_K over a complete discrete valuation field K, we show that every finite subgroup scheme of A_K extends to a log finite flat group scheme over the valuation ring of K endowed with the canonical log structure. To achieve this, we first prove that every weak log abelian variety over an fs log scheme with its underlying scheme locally noetherian, is a sheaf for the Kummer flat topology, which answers a question of Chikara Nakayama. We also give several equivalent conditions defining isogenies of log abelian varieties.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2019-0049\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2019-0049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

对于完全离散估值域K上的半稳定阿贝尔变种a_K,我们证明了a_K的每个有限子群方案在具有正则对数结构的K的估值环上推广到对数有限平群方案。为了实现这一点,我们首先证明了fs-log方案及其底层方案局部noetherian上的每一个弱log阿贝尔变种都是Kummer平面拓扑的sheaf,这回答了Chikara-Nakayama的一个问题。我们还给出了定义对数阿贝尔变种同源性的几个等价条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending finite-subgroup schemes of semistable abelian varieties via log-abelian varieties
For a semi-stable abelian variety A_K over a complete discrete valuation field K, we show that every finite subgroup scheme of A_K extends to a log finite flat group scheme over the valuation ring of K endowed with the canonical log structure. To achieve this, we first prove that every weak log abelian variety over an fs log scheme with its underlying scheme locally noetherian, is a sheaf for the Kummer flat topology, which answers a question of Chikara Nakayama. We also give several equivalent conditions defining isogenies of log abelian varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信