四阶色散幂律介质中光孤子的三种积分方法

IF 0.1 Q4 MATHEMATICS
J. Manafian
{"title":"四阶色散幂律介质中光孤子的三种积分方法","authors":"J. Manafian","doi":"10.1080/23311835.2018.1434924","DOIUrl":null,"url":null,"abstract":"In this paper, the extended trial equation method, the -expansion method and the -expansion method are used in examining the analytical solution of the non-linear Schrödinger equation (NLSE) with fourth-order dispersion. The proposed methods are based on the integration method and a wave transformation. The NLSE with fourth-order dispersion is an equation that arises in soliton radiation, soliton communications with dispersion caused by the hindrance in presence of higher order dispersion terms. We successfully get some solutions with the kink structure.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311835.2018.1434924","citationCount":"9","resultStr":"{\"title\":\"Optical solitons in a power-law media with fourth-order dispersion by three integration methods\",\"authors\":\"J. Manafian\",\"doi\":\"10.1080/23311835.2018.1434924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the extended trial equation method, the -expansion method and the -expansion method are used in examining the analytical solution of the non-linear Schrödinger equation (NLSE) with fourth-order dispersion. The proposed methods are based on the integration method and a wave transformation. The NLSE with fourth-order dispersion is an equation that arises in soliton radiation, soliton communications with dispersion caused by the hindrance in presence of higher order dispersion terms. We successfully get some solutions with the kink structure.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311835.2018.1434924\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311835.2018.1434924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311835.2018.1434924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

本文采用扩展试方程法、展开法和展开法研究了四阶色散非线性Schrödinger方程(NLSE)的解析解。所提出的方法是基于积分法和波变换。具有四阶色散的NLSE是在孤子辐射中出现的方程,在高阶色散项存在的阻碍下,孤子通信具有色散。我们成功地得到了一些扭结结构的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical solitons in a power-law media with fourth-order dispersion by three integration methods
In this paper, the extended trial equation method, the -expansion method and the -expansion method are used in examining the analytical solution of the non-linear Schrödinger equation (NLSE) with fourth-order dispersion. The proposed methods are based on the integration method and a wave transformation. The NLSE with fourth-order dispersion is an equation that arises in soliton radiation, soliton communications with dispersion caused by the hindrance in presence of higher order dispersion terms. We successfully get some solutions with the kink structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信