{"title":"利用毫米波射电亮度预测太阳耀斑","authors":"J. Kallunki","doi":"10.2478/lpts-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract Solar activity could have significant impacts on various Earth and near-Earth space systems, such as satellite communication and power grid systems. The prediction of solar activity and active solar events plays a major role when preparing for these disturbances. Various satellite-based instruments constantly observe the Sun. However, only a few ground-based solar instruments could provide versatile enough information for the space weather prediction. Metsähovi Radio Observatory of Aalto University (Finland) has a unique collection of millimetre (8 mm) solar radio maps over the past 40 years, and even denser observational solar radio data catalogue since 2011. About 75–80 % days yearly are covered nowadays. This gives opportunity to make statistical estimation of solar flare occurrence based on solar radio maps. In this study, we had 2253 days when both solar radio map and GOES (Geostationary Operational Environmental Satellites) classified solar flare were observed. In this work, we used solar flare classification done by the Space Weather Centre (SWC) of the National Oceanic and Atmospheric Administration (NOAA). The data were observed between 1 January 2011 and 12 September 2022. Our study shows that the maximum intensity of radio brightenings is a good indicator to tell which kind of GOES classified solar flare could be expected to happen. The article presents that intense radio brightening is needed to produce a certain GOES classified solar flare.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"60 1","pages":"43 - 51"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Predicition of Solar Flares Using Millimeter Radio Brightenings\",\"authors\":\"J. Kallunki\",\"doi\":\"10.2478/lpts-2023-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Solar activity could have significant impacts on various Earth and near-Earth space systems, such as satellite communication and power grid systems. The prediction of solar activity and active solar events plays a major role when preparing for these disturbances. Various satellite-based instruments constantly observe the Sun. However, only a few ground-based solar instruments could provide versatile enough information for the space weather prediction. Metsähovi Radio Observatory of Aalto University (Finland) has a unique collection of millimetre (8 mm) solar radio maps over the past 40 years, and even denser observational solar radio data catalogue since 2011. About 75–80 % days yearly are covered nowadays. This gives opportunity to make statistical estimation of solar flare occurrence based on solar radio maps. In this study, we had 2253 days when both solar radio map and GOES (Geostationary Operational Environmental Satellites) classified solar flare were observed. In this work, we used solar flare classification done by the Space Weather Centre (SWC) of the National Oceanic and Atmospheric Administration (NOAA). The data were observed between 1 January 2011 and 12 September 2022. Our study shows that the maximum intensity of radio brightenings is a good indicator to tell which kind of GOES classified solar flare could be expected to happen. The article presents that intense radio brightening is needed to produce a certain GOES classified solar flare.\",\"PeriodicalId\":43603,\"journal\":{\"name\":\"Latvian Journal of Physics and Technical Sciences\",\"volume\":\"60 1\",\"pages\":\"43 - 51\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latvian Journal of Physics and Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/lpts-2023-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
The Predicition of Solar Flares Using Millimeter Radio Brightenings
Abstract Solar activity could have significant impacts on various Earth and near-Earth space systems, such as satellite communication and power grid systems. The prediction of solar activity and active solar events plays a major role when preparing for these disturbances. Various satellite-based instruments constantly observe the Sun. However, only a few ground-based solar instruments could provide versatile enough information for the space weather prediction. Metsähovi Radio Observatory of Aalto University (Finland) has a unique collection of millimetre (8 mm) solar radio maps over the past 40 years, and even denser observational solar radio data catalogue since 2011. About 75–80 % days yearly are covered nowadays. This gives opportunity to make statistical estimation of solar flare occurrence based on solar radio maps. In this study, we had 2253 days when both solar radio map and GOES (Geostationary Operational Environmental Satellites) classified solar flare were observed. In this work, we used solar flare classification done by the Space Weather Centre (SWC) of the National Oceanic and Atmospheric Administration (NOAA). The data were observed between 1 January 2011 and 12 September 2022. Our study shows that the maximum intensity of radio brightenings is a good indicator to tell which kind of GOES classified solar flare could be expected to happen. The article presents that intense radio brightening is needed to produce a certain GOES classified solar flare.
期刊介绍:
Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.