结合基于MRF和基于Gram的方法快速生成纺织品图案

IF 1 4区 工程技术 Q3 MATERIALS SCIENCE, TEXTILES
Yuexin Sun, YU Chen
{"title":"结合基于MRF和基于Gram的方法快速生成纺织品图案","authors":"Yuexin Sun, YU Chen","doi":"10.35530/it.074.04.202254","DOIUrl":null,"url":null,"abstract":"Textile pattern design is a tedious and challenging task for designers. This paper proposes a fast textile pattern\ngeneration algorithm that combines MRF-based and Gram-based methods. First, the reconstruction method based on\nimage optimisation is determined after analysing the specific requirements of textile pattern design. The pre-trained\nVGG19 is selected as the style feature extraction neural network. Then, we compare the generation results of various\ncombinations of style loss functions and propose a multi-resolution image optimisation method. Finally, the smoothing\nloss and colour histogram matching are added to improve the generation quality further, thus constructing an image\ngeneration algorithm for textile pattern design. Experimental results demonstrate that our algorithm can effectively\ngenerate complex textile patterns with global style and local detail features. The average image generation time is 575s,\nover 84.3% faster than traditional algorithms. At the same time, this algorithm is convenient for switching styles and\nrequires lower computational capability. It can improve pattern design efficiency and promote the application of image\ngeneration technology in textile design.","PeriodicalId":13638,"journal":{"name":"Industria Textila","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast textile pattern generation combining MRF-based and Gram-based methods\",\"authors\":\"Yuexin Sun, YU Chen\",\"doi\":\"10.35530/it.074.04.202254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textile pattern design is a tedious and challenging task for designers. This paper proposes a fast textile pattern\\ngeneration algorithm that combines MRF-based and Gram-based methods. First, the reconstruction method based on\\nimage optimisation is determined after analysing the specific requirements of textile pattern design. The pre-trained\\nVGG19 is selected as the style feature extraction neural network. Then, we compare the generation results of various\\ncombinations of style loss functions and propose a multi-resolution image optimisation method. Finally, the smoothing\\nloss and colour histogram matching are added to improve the generation quality further, thus constructing an image\\ngeneration algorithm for textile pattern design. Experimental results demonstrate that our algorithm can effectively\\ngenerate complex textile patterns with global style and local detail features. The average image generation time is 575s,\\nover 84.3% faster than traditional algorithms. At the same time, this algorithm is convenient for switching styles and\\nrequires lower computational capability. It can improve pattern design efficiency and promote the application of image\\ngeneration technology in textile design.\",\"PeriodicalId\":13638,\"journal\":{\"name\":\"Industria Textila\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industria Textila\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35530/it.074.04.202254\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industria Textila","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35530/it.074.04.202254","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

纺织图案设计对设计师来说是一项乏味而富有挑战性的任务。本文提出了一种将基于MRF和基于Gram的方法相结合的快速纺织品图案生成算法。首先,在分析了织物图案设计的具体要求后,确定了基于图像优化的重构方法。选择预先训练的VGG19作为风格特征提取神经网络。然后,我们比较了风格损失函数的各种组合的生成结果,并提出了一种多分辨率图像优化方法。最后,加入了平滑损失和颜色直方图匹配,进一步提高了生成质量,从而构建了一种用于纺织品图案设计的图像生成算法。实验结果表明,该算法能够有效地生成具有全局风格和局部细节特征的复杂织物图案。平均图像生成时间为575s,比传统算法快84.3%以上。同时,该算法便于风格切换,计算能力较低。它可以提高图案设计效率,促进图像生成技术在纺织品设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast textile pattern generation combining MRF-based and Gram-based methods
Textile pattern design is a tedious and challenging task for designers. This paper proposes a fast textile pattern generation algorithm that combines MRF-based and Gram-based methods. First, the reconstruction method based on image optimisation is determined after analysing the specific requirements of textile pattern design. The pre-trained VGG19 is selected as the style feature extraction neural network. Then, we compare the generation results of various combinations of style loss functions and propose a multi-resolution image optimisation method. Finally, the smoothing loss and colour histogram matching are added to improve the generation quality further, thus constructing an image generation algorithm for textile pattern design. Experimental results demonstrate that our algorithm can effectively generate complex textile patterns with global style and local detail features. The average image generation time is 575s, over 84.3% faster than traditional algorithms. At the same time, this algorithm is convenient for switching styles and requires lower computational capability. It can improve pattern design efficiency and promote the application of image generation technology in textile design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industria Textila
Industria Textila 工程技术-材料科学:纺织
CiteScore
1.80
自引率
14.30%
发文量
81
审稿时长
3.5 months
期刊介绍: Industria Textila journal is addressed to university and research specialists, to companies active in the textiles and clothing sector and to the related sectors users of textile products with a technical purpose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信