Yang Li , Yanqiang Wu , Xinyu Xue , Xuemei Liu , Yang Xu , Xinghua Liu
{"title":"多架无人机在不同农药需求的异质农田高效优先喷洒任务安排优化","authors":"Yang Li , Yanqiang Wu , Xinyu Xue , Xuemei Liu , Yang Xu , Xinghua Liu","doi":"10.1016/j.inpa.2023.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Combining multiple crop protection Unmanned Aerial Vehicles (UAVs) as a team for a scheduled spraying mission over farmland now is a common way to significantly increase efficiency. However, given some issues such as different configurations, irregular borders, and especially varying pesticide requirements, it is more important and more complex than other multi-Agent Systems (MASs) in common use. In this work, we focus on the mission arrangement of UAVs, which is the foundation of other high-level cooperations, systematically propose Efficiency-first Spraying Mission Arrangement Problem (ESMAP), and try to construct a united problem framework for the mission arrangement of crop protection UAVs. Besides, to characterise the differences in sub-areas, the varying pesticide requirement per unit is well considered based on Normalized Difference Vegetation Index (NDVI). Firstly, the mathematical model of multiple crop-protection UAVs is established and ESMAP is defined. Furthermore, an acquisition method of a farmland’s NDVI map is proposed, and the calculation method of pesticide volume based on NDVI is discussed. Secondly, an improved Genetic Algorithm (GA) is proposed to solve ESMAP, and a comparable combination algorithm is introduced. Numerical simulations for algorithm analysis are carried out within MATLAB, and it is determined that the proposed GA is more efficient and accurate than the latter. Finally, a mission arrangement tested with three UAVs was carried out to validate the effectiveness of the proposed GA in spraying operation. Test results illustrated that it performed well, which took only 90.6 % of the operation time taken by the combination algorithm.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 2","pages":"Pages 237-248"},"PeriodicalIF":7.7000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000161/pdfft?md5=ccc3b2f5b28c51e989d56b8f26870850&pid=1-s2.0-S2214317323000161-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficiency-first spraying mission arrangement optimization with multiple UAVs in heterogeneous farmland with varying pesticide requirements\",\"authors\":\"Yang Li , Yanqiang Wu , Xinyu Xue , Xuemei Liu , Yang Xu , Xinghua Liu\",\"doi\":\"10.1016/j.inpa.2023.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Combining multiple crop protection Unmanned Aerial Vehicles (UAVs) as a team for a scheduled spraying mission over farmland now is a common way to significantly increase efficiency. However, given some issues such as different configurations, irregular borders, and especially varying pesticide requirements, it is more important and more complex than other multi-Agent Systems (MASs) in common use. In this work, we focus on the mission arrangement of UAVs, which is the foundation of other high-level cooperations, systematically propose Efficiency-first Spraying Mission Arrangement Problem (ESMAP), and try to construct a united problem framework for the mission arrangement of crop protection UAVs. Besides, to characterise the differences in sub-areas, the varying pesticide requirement per unit is well considered based on Normalized Difference Vegetation Index (NDVI). Firstly, the mathematical model of multiple crop-protection UAVs is established and ESMAP is defined. Furthermore, an acquisition method of a farmland’s NDVI map is proposed, and the calculation method of pesticide volume based on NDVI is discussed. Secondly, an improved Genetic Algorithm (GA) is proposed to solve ESMAP, and a comparable combination algorithm is introduced. Numerical simulations for algorithm analysis are carried out within MATLAB, and it is determined that the proposed GA is more efficient and accurate than the latter. Finally, a mission arrangement tested with three UAVs was carried out to validate the effectiveness of the proposed GA in spraying operation. Test results illustrated that it performed well, which took only 90.6 % of the operation time taken by the combination algorithm.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"11 2\",\"pages\":\"Pages 237-248\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000161/pdfft?md5=ccc3b2f5b28c51e989d56b8f26870850&pid=1-s2.0-S2214317323000161-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317323000161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficiency-first spraying mission arrangement optimization with multiple UAVs in heterogeneous farmland with varying pesticide requirements
Combining multiple crop protection Unmanned Aerial Vehicles (UAVs) as a team for a scheduled spraying mission over farmland now is a common way to significantly increase efficiency. However, given some issues such as different configurations, irregular borders, and especially varying pesticide requirements, it is more important and more complex than other multi-Agent Systems (MASs) in common use. In this work, we focus on the mission arrangement of UAVs, which is the foundation of other high-level cooperations, systematically propose Efficiency-first Spraying Mission Arrangement Problem (ESMAP), and try to construct a united problem framework for the mission arrangement of crop protection UAVs. Besides, to characterise the differences in sub-areas, the varying pesticide requirement per unit is well considered based on Normalized Difference Vegetation Index (NDVI). Firstly, the mathematical model of multiple crop-protection UAVs is established and ESMAP is defined. Furthermore, an acquisition method of a farmland’s NDVI map is proposed, and the calculation method of pesticide volume based on NDVI is discussed. Secondly, an improved Genetic Algorithm (GA) is proposed to solve ESMAP, and a comparable combination algorithm is introduced. Numerical simulations for algorithm analysis are carried out within MATLAB, and it is determined that the proposed GA is more efficient and accurate than the latter. Finally, a mission arrangement tested with three UAVs was carried out to validate the effectiveness of the proposed GA in spraying operation. Test results illustrated that it performed well, which took only 90.6 % of the operation time taken by the combination algorithm.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining