乘法是有界Wiener $p$变分函数在Banach代数中的开双线性映射

IF 0.1 Q4 MATHEMATICS
T. Munoz-Darias, A. Karlovich, E. Shargorodsky
{"title":"乘法是有界Wiener $p$变分函数在Banach代数中的开双线性映射","authors":"T. Munoz-Darias, A. Karlovich, E. Shargorodsky","doi":"10.14321/realanalexch.46.1.0121","DOIUrl":null,"url":null,"abstract":"Let $BV_p[0,1]$, $1\\le p<\\infty$, be the Banach algebra of functions of bounded $p$-variation in the sense of Wiener. Recently, Kowalczyk and Turowska \\cite{KT19} proved that the multiplication in $BV_1[0,1]$ is an open bilinear mapping. We extend this result for all values of $p\\in[1,\\infty)$.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiplication is an open bilinear mapping in the Banach algebra of functions of bounded Wiener $p$-variation\",\"authors\":\"T. Munoz-Darias, A. Karlovich, E. Shargorodsky\",\"doi\":\"10.14321/realanalexch.46.1.0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $BV_p[0,1]$, $1\\\\le p<\\\\infty$, be the Banach algebra of functions of bounded $p$-variation in the sense of Wiener. Recently, Kowalczyk and Turowska \\\\cite{KT19} proved that the multiplication in $BV_1[0,1]$ is an open bilinear mapping. We extend this result for all values of $p\\\\in[1,\\\\infty)$.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.46.1.0121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.46.1.0121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设$BV_p[0,1]$, $1\le p<\infty$为Wiener意义上有界$p$ -变分函数的Banach代数。最近,Kowalczyk和Turowska \cite{KT19}证明了$BV_1[0,1]$中的乘法是一个开放的双线性映射。我们将这个结果扩展到$p\in[1,\infty)$的所有值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplication is an open bilinear mapping in the Banach algebra of functions of bounded Wiener $p$-variation
Let $BV_p[0,1]$, $1\le p<\infty$, be the Banach algebra of functions of bounded $p$-variation in the sense of Wiener. Recently, Kowalczyk and Turowska \cite{KT19} proved that the multiplication in $BV_1[0,1]$ is an open bilinear mapping. We extend this result for all values of $p\in[1,\infty)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信