一维粘性标量守恒律平均场秩基粒子近似的弱、强误差分析

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Oumaima Bencheikh, B. Jourdain
{"title":"一维粘性标量守恒律平均场秩基粒子近似的弱、强误差分析","authors":"Oumaima Bencheikh, B. Jourdain","doi":"10.1214/21-aap1776","DOIUrl":null,"url":null,"abstract":"In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weak and strong error analysis for mean-field rank-based particle approximations of one-dimensional viscous scalar conservation laws\",\"authors\":\"Oumaima Bencheikh, B. Jourdain\",\"doi\":\"10.1214/21-aap1776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aap1776\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aap1776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文分析了在漂移系数和恒定扩散系数下,具有平均场秩相互作用的N粒子相互作用系统的收敛速度。我们首先采用Kolli和Shkolnikov[22]的论点,对McKean意义上的非线性随机微分方程的最优速率N−1/2混沌的轨迹传播进行了检验。接下来,我们放宽了Bossy[6]检验粒子系统步长为h的欧拉离散的经验累积分布函数在L (R)以速率O(1√N + h)收敛到一维粘性标量守恒律解所需的假设。最后,我们证明了这种随机粒子方法的偏差表现为O (1 N + h)。我们提供的数值结果证实了我们的理论估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak and strong error analysis for mean-field rank-based particle approximations of one-dimensional viscous scalar conservation laws
In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信