一维粘性标量守恒律平均场秩基粒子近似的弱、强误差分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Oumaima Bencheikh, B. Jourdain
{"title":"一维粘性标量守恒律平均场秩基粒子近似的弱、强误差分析","authors":"Oumaima Bencheikh, B. Jourdain","doi":"10.1214/21-aap1776","DOIUrl":null,"url":null,"abstract":"In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weak and strong error analysis for mean-field rank-based particle approximations of one-dimensional viscous scalar conservation laws\",\"authors\":\"Oumaima Bencheikh, B. Jourdain\",\"doi\":\"10.1214/21-aap1776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aap1776\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aap1776","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文分析了在漂移系数和恒定扩散系数下,具有平均场秩相互作用的N粒子相互作用系统的收敛速度。我们首先采用Kolli和Shkolnikov[22]的论点,对McKean意义上的非线性随机微分方程的最优速率N−1/2混沌的轨迹传播进行了检验。接下来,我们放宽了Bossy[6]检验粒子系统步长为h的欧拉离散的经验累积分布函数在L (R)以速率O(1√N + h)收敛到一维粘性标量守恒律解所需的假设。最后,我们证明了这种随机粒子方法的偏差表现为O (1 N + h)。我们提供的数值结果证实了我们的理论估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak and strong error analysis for mean-field rank-based particle approximations of one-dimensional viscous scalar conservation laws
In this paper, we analyse the rate of convergence of a system of N interacting particles with mean-field rank-based interaction in the drift coefficient and constant diffusion coefficient. We first adapt arguments by Kolli and Shkolnikov [22] to check trajectorial propagation of chaos with optimal rate N−1/2 to the associated stochastic differential equations nonlinear in the sense of McKean. We next relax the assumptions needed by Bossy [6] to check the convergence in L (R) with rate O ( 1 √ N + h ) of the empirical cumulative distribution function of the Euler discretization with step h of the particle system to the solution of a one dimensional viscous scalar conservation law. Last, we prove that the bias of this stochastic particle method behaves as O ( 1 N + h ) . We provide numerical results which confirm our theoretical estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信