电池表面积对碧心敏化太阳能电池效率和可复用性的影响

Anissa Bella Maharani, L. Destiarti, W. Rahmalia
{"title":"电池表面积对碧心敏化太阳能电池效率和可复用性的影响","authors":"Anissa Bella Maharani, L. Destiarti, W. Rahmalia","doi":"10.26418/positron.v12i1.53409","DOIUrl":null,"url":null,"abstract":"Dye-Sensitized Solar Cells or DSSC is the latest solar cell type generation that uses natural dyes as sensitizers. Bixin extracted from the seeds of kesumba (Bixa orellana L) is one of the natural dyes that can be used as a sensitizer. This study aims to determine the effect of the active surface area of solar cells on the effectivity and reusability of bixin-sensitized solar cells based on their open-circuit voltage (Voc), short-circuit current (Isc), and maximum energy conversion efficiency. The results of this study will provide an overview of the best surface area to produce DSSC with the highest maximum energy conversion efficiency and the lifetime of bixin sensitized solar cells. The measurement results showed that the resulting Voc for each variation of the surface area 1, 2, and 3 cm2 was 344; 719; 1002 mV under intensity 100 mW cm-2, while the Isc produced under the same intensity was 0.223; 0.471; 0.680 mA. Based on the calculation results, the maximum power generated by each surface area was 0,077; 0,338; 0,681 W.  This means that the larger the active surface area of the solar cell, the greater the voltage and current generated. In this work, the highest efficiency was produced by solar cells with a surface area of 2 cm2, which is 0.085%. The solar cells fabricated in this study can be reused for five days under continuous irradiation.","PeriodicalId":31789,"journal":{"name":"Positron","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Cell Surface Area on the Effectivity and Reusability of Bixin Sensitized Solar Cells\",\"authors\":\"Anissa Bella Maharani, L. Destiarti, W. Rahmalia\",\"doi\":\"10.26418/positron.v12i1.53409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dye-Sensitized Solar Cells or DSSC is the latest solar cell type generation that uses natural dyes as sensitizers. Bixin extracted from the seeds of kesumba (Bixa orellana L) is one of the natural dyes that can be used as a sensitizer. This study aims to determine the effect of the active surface area of solar cells on the effectivity and reusability of bixin-sensitized solar cells based on their open-circuit voltage (Voc), short-circuit current (Isc), and maximum energy conversion efficiency. The results of this study will provide an overview of the best surface area to produce DSSC with the highest maximum energy conversion efficiency and the lifetime of bixin sensitized solar cells. The measurement results showed that the resulting Voc for each variation of the surface area 1, 2, and 3 cm2 was 344; 719; 1002 mV under intensity 100 mW cm-2, while the Isc produced under the same intensity was 0.223; 0.471; 0.680 mA. Based on the calculation results, the maximum power generated by each surface area was 0,077; 0,338; 0,681 W.  This means that the larger the active surface area of the solar cell, the greater the voltage and current generated. In this work, the highest efficiency was produced by solar cells with a surface area of 2 cm2, which is 0.085%. The solar cells fabricated in this study can be reused for five days under continuous irradiation.\",\"PeriodicalId\":31789,\"journal\":{\"name\":\"Positron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/positron.v12i1.53409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/positron.v12i1.53409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

染料敏化太阳能电池(DSSC)是最新一代使用天然染料作为敏化剂的太阳能电池。从克桑巴(Bixa orellana L)种子中提取的Bixin是一种可用作敏化剂的天然染料。本研究旨在根据bixin敏化太阳能电池的开路电压(Voc)、短路电流(Isc)和最大能量转换效率,确定太阳能电池的活性表面积对其有效性和可重复使用性的影响。这项研究的结果将概述生产具有最高最大能量转换效率的DSSC的最佳表面积和比心敏化太阳能电池的寿命。测量结果表明,对于表面积1、2和3cm2的每个变化,得到的Voc为344;719;在强度100mW cm-2下为1002mV,而在相同强度下产生的Isc为0.223;0.471;0.680mA。根据计算结果,每个表面积产生的最大功率为0077;0338;0681W。这意味着太阳能电池的活性表面积越大,产生的电压和电流就越大。在这项工作中,表面积为2 cm2的太阳能电池产生的效率最高,为0.085%。本研究中制造的太阳能电池可以在连续照射下重复使用五天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Cell Surface Area on the Effectivity and Reusability of Bixin Sensitized Solar Cells
Dye-Sensitized Solar Cells or DSSC is the latest solar cell type generation that uses natural dyes as sensitizers. Bixin extracted from the seeds of kesumba (Bixa orellana L) is one of the natural dyes that can be used as a sensitizer. This study aims to determine the effect of the active surface area of solar cells on the effectivity and reusability of bixin-sensitized solar cells based on their open-circuit voltage (Voc), short-circuit current (Isc), and maximum energy conversion efficiency. The results of this study will provide an overview of the best surface area to produce DSSC with the highest maximum energy conversion efficiency and the lifetime of bixin sensitized solar cells. The measurement results showed that the resulting Voc for each variation of the surface area 1, 2, and 3 cm2 was 344; 719; 1002 mV under intensity 100 mW cm-2, while the Isc produced under the same intensity was 0.223; 0.471; 0.680 mA. Based on the calculation results, the maximum power generated by each surface area was 0,077; 0,338; 0,681 W.  This means that the larger the active surface area of the solar cell, the greater the voltage and current generated. In this work, the highest efficiency was produced by solar cells with a surface area of 2 cm2, which is 0.085%. The solar cells fabricated in this study can be reused for five days under continuous irradiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信