Brad Saund, Sanjiban Choudhury, S. Srinivasa, D. Berenson
{"title":"蒙眼旅行者的问题:带接触估计的运动规划搜索框架","authors":"Brad Saund, Sanjiban Choudhury, S. Srinivasa, D. Berenson","doi":"10.1177/02783649231170893","DOIUrl":null,"url":null,"abstract":"We address the problem of robot motion planning under uncertainty where the only observations are through contact with the environment. Such problems are typically solved by planning optimistically assuming unknown space is free, moving along the planned path and re-planning if the robot collides. However this approach can be very inefficient, leading to many unnecessary collisions and unproductive motion. We propose a new formulation, the Blindfolded Traveler’s Problem (BTP), for planning on a graph containing edges with unknown validity, with true validity observed only through attempted traversal by the robot. The solution to a BTP is a policy indicating the next edge to attempt given previous observations and an initial belief. We prove that BTP is NP-complete and show that exact modeling of the belief is intractable, therefore we present several approximation-based policies and beliefs. For the policy we propose graph search with edge weights augmented by the probability of collision. For the belief representation we propose a weighted Mixture of Experts of Collision Hypothesis Sets and a Manifold Particle Filter. Empirical evaluation in simulation and on a real robot arm shows that our proposed approach vastly outperforms several baselines as well as a previous approach that does not employ the BTP framework.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"289 - 309"},"PeriodicalIF":7.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The blindfolded traveler’s problem: A search framework for motion planning with contact estimates\",\"authors\":\"Brad Saund, Sanjiban Choudhury, S. Srinivasa, D. Berenson\",\"doi\":\"10.1177/02783649231170893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of robot motion planning under uncertainty where the only observations are through contact with the environment. Such problems are typically solved by planning optimistically assuming unknown space is free, moving along the planned path and re-planning if the robot collides. However this approach can be very inefficient, leading to many unnecessary collisions and unproductive motion. We propose a new formulation, the Blindfolded Traveler’s Problem (BTP), for planning on a graph containing edges with unknown validity, with true validity observed only through attempted traversal by the robot. The solution to a BTP is a policy indicating the next edge to attempt given previous observations and an initial belief. We prove that BTP is NP-complete and show that exact modeling of the belief is intractable, therefore we present several approximation-based policies and beliefs. For the policy we propose graph search with edge weights augmented by the probability of collision. For the belief representation we propose a weighted Mixture of Experts of Collision Hypothesis Sets and a Manifold Particle Filter. Empirical evaluation in simulation and on a real robot arm shows that our proposed approach vastly outperforms several baselines as well as a previous approach that does not employ the BTP framework.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"42 1\",\"pages\":\"289 - 309\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649231170893\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649231170893","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
The blindfolded traveler’s problem: A search framework for motion planning with contact estimates
We address the problem of robot motion planning under uncertainty where the only observations are through contact with the environment. Such problems are typically solved by planning optimistically assuming unknown space is free, moving along the planned path and re-planning if the robot collides. However this approach can be very inefficient, leading to many unnecessary collisions and unproductive motion. We propose a new formulation, the Blindfolded Traveler’s Problem (BTP), for planning on a graph containing edges with unknown validity, with true validity observed only through attempted traversal by the robot. The solution to a BTP is a policy indicating the next edge to attempt given previous observations and an initial belief. We prove that BTP is NP-complete and show that exact modeling of the belief is intractable, therefore we present several approximation-based policies and beliefs. For the policy we propose graph search with edge weights augmented by the probability of collision. For the belief representation we propose a weighted Mixture of Experts of Collision Hypothesis Sets and a Manifold Particle Filter. Empirical evaluation in simulation and on a real robot arm shows that our proposed approach vastly outperforms several baselines as well as a previous approach that does not employ the BTP framework.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.