{"title":"在希尔伯特和根岑之间:四值结果系统和结构推理","authors":"Yaroslav Shramko","doi":"10.1007/s00153-021-00806-2","DOIUrl":null,"url":null,"abstract":"<div><p>Structural reasoning is simply reasoning that is governed exclusively by structural rules. In this context a proof system can be said to be structural if all of its inference rules are structural. A logic is considered to be structuralizable if it can be equipped with a sound and complete structural proof system. This paper provides a general formulation of the problem of structuralizability of a given logic, giving specific consideration to a family of logics that are based on the Dunn–Belnap four-valued semantics. It is shown how sound and complete structural proof systems can be constructed for a spectrum of logics within different logical frameworks.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Between Hilbert and Gentzen: four-valued consequence systems and structural reasoning\",\"authors\":\"Yaroslav Shramko\",\"doi\":\"10.1007/s00153-021-00806-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural reasoning is simply reasoning that is governed exclusively by structural rules. In this context a proof system can be said to be structural if all of its inference rules are structural. A logic is considered to be structuralizable if it can be equipped with a sound and complete structural proof system. This paper provides a general formulation of the problem of structuralizability of a given logic, giving specific consideration to a family of logics that are based on the Dunn–Belnap four-valued semantics. It is shown how sound and complete structural proof systems can be constructed for a spectrum of logics within different logical frameworks.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-021-00806-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-021-00806-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Between Hilbert and Gentzen: four-valued consequence systems and structural reasoning
Structural reasoning is simply reasoning that is governed exclusively by structural rules. In this context a proof system can be said to be structural if all of its inference rules are structural. A logic is considered to be structuralizable if it can be equipped with a sound and complete structural proof system. This paper provides a general formulation of the problem of structuralizability of a given logic, giving specific consideration to a family of logics that are based on the Dunn–Belnap four-valued semantics. It is shown how sound and complete structural proof systems can be constructed for a spectrum of logics within different logical frameworks.
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.