在希尔伯特和根岑之间:四值结果系统和结构推理

IF 0.3 4区 数学 Q1 Arts and Humanities
Yaroslav Shramko
{"title":"在希尔伯特和根岑之间:四值结果系统和结构推理","authors":"Yaroslav Shramko","doi":"10.1007/s00153-021-00806-2","DOIUrl":null,"url":null,"abstract":"<div><p>Structural reasoning is simply reasoning that is governed exclusively by structural rules. In this context a proof system can be said to be structural if all of its inference rules are structural. A logic is considered to be structuralizable if it can be equipped with a sound and complete structural proof system. This paper provides a general formulation of the problem of structuralizability of a given logic, giving specific consideration to a family of logics that are based on the Dunn–Belnap four-valued semantics. It is shown how sound and complete structural proof systems can be constructed for a spectrum of logics within different logical frameworks.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Between Hilbert and Gentzen: four-valued consequence systems and structural reasoning\",\"authors\":\"Yaroslav Shramko\",\"doi\":\"10.1007/s00153-021-00806-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural reasoning is simply reasoning that is governed exclusively by structural rules. In this context a proof system can be said to be structural if all of its inference rules are structural. A logic is considered to be structuralizable if it can be equipped with a sound and complete structural proof system. This paper provides a general formulation of the problem of structuralizability of a given logic, giving specific consideration to a family of logics that are based on the Dunn–Belnap four-valued semantics. It is shown how sound and complete structural proof systems can be constructed for a spectrum of logics within different logical frameworks.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-021-00806-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-021-00806-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

结构推理就是完全由结构规则支配的推理。在这种情况下,如果一个证明系统的所有推理规则都是结构化的,那么这个证明系统就可以说是结构化的。如果一个逻辑可以配备一个健全和完整的结构证明系统,那么它就被认为是可结构化的。本文给出了给定逻辑的可结构化性问题的一般表述,并具体考虑了基于Dunn-Belnap四值语义的逻辑族。它显示了如何在不同的逻辑框架内为一系列逻辑构建健全和完整的结构证明系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Between Hilbert and Gentzen: four-valued consequence systems and structural reasoning

Structural reasoning is simply reasoning that is governed exclusively by structural rules. In this context a proof system can be said to be structural if all of its inference rules are structural. A logic is considered to be structuralizable if it can be equipped with a sound and complete structural proof system. This paper provides a general formulation of the problem of structuralizability of a given logic, giving specific consideration to a family of logics that are based on the Dunn–Belnap four-valued semantics. It is shown how sound and complete structural proof systems can be constructed for a spectrum of logics within different logical frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信