{"title":"利用遗传编程为格斗游戏创造AI角色","authors":"G. Martínez-Arellano, R. Cant, D. Woods","doi":"10.1109/TCIAIG.2016.2642158","DOIUrl":null,"url":null,"abstract":"This paper proposes a character generation approach for the M.U.G.E.N. fighting game that can create engaging AI characters using a computationally cheap process without the intervention of the expert developer. The approach uses a genetic programming algorithm that refines randomly generated character strategies into better ones using tournament selection. The generated AI characters were tested by 27 human players and were rated according to results, perceived difficulty and how engaging the gameplay was. The main advantages of this procedure are that no prior knowledge of how to code the strategies of the AI character is needed and there is no need to interact with the internal code of the game. In addition, the procedure is capable of creating a wide diversity of players with different strategic skills, which could be potentially used as a starting point to a further adaptive process.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"9 1","pages":"423-434"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2642158","citationCount":"24","resultStr":"{\"title\":\"Creating AI Characters for Fighting Games Using Genetic Programming\",\"authors\":\"G. Martínez-Arellano, R. Cant, D. Woods\",\"doi\":\"10.1109/TCIAIG.2016.2642158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a character generation approach for the M.U.G.E.N. fighting game that can create engaging AI characters using a computationally cheap process without the intervention of the expert developer. The approach uses a genetic programming algorithm that refines randomly generated character strategies into better ones using tournament selection. The generated AI characters were tested by 27 human players and were rated according to results, perceived difficulty and how engaging the gameplay was. The main advantages of this procedure are that no prior knowledge of how to code the strategies of the AI character is needed and there is no need to interact with the internal code of the game. In addition, the procedure is capable of creating a wide diversity of players with different strategic skills, which could be potentially used as a starting point to a further adaptive process.\",\"PeriodicalId\":49192,\"journal\":{\"name\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"volume\":\"9 1\",\"pages\":\"423-434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2642158\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Intelligence and AI in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCIAIG.2016.2642158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2016.2642158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Creating AI Characters for Fighting Games Using Genetic Programming
This paper proposes a character generation approach for the M.U.G.E.N. fighting game that can create engaging AI characters using a computationally cheap process without the intervention of the expert developer. The approach uses a genetic programming algorithm that refines randomly generated character strategies into better ones using tournament selection. The generated AI characters were tested by 27 human players and were rated according to results, perceived difficulty and how engaging the gameplay was. The main advantages of this procedure are that no prior knowledge of how to code the strategies of the AI character is needed and there is no need to interact with the internal code of the game. In addition, the procedure is capable of creating a wide diversity of players with different strategic skills, which could be potentially used as a starting point to a further adaptive process.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.