{"title":"大气-波浪-海洋耦合模式模拟的台风Lionrock(2016)衰减期对流爆发与强度变化的关系","authors":"A. Wada, R. Oyama","doi":"10.2151/JMSJ.2018-052","DOIUrl":null,"url":null,"abstract":"Typhoon Lionrock (2016) made landfall in the Pacific side of northern Japan. One of the intriguing events was consecutive deep convections (convective bursts, CBs) occurred before making landfall on 31 August. Lionrock paused the decay of the intensity of the storm, although sea surface cooling (SSC) was induced distinctly by Lionrock along the track. To examine the influence of CBs on changes in storm intensity during the decay phase, numerical simulations were conducted with a 3 km mesh coupled atmosphere-wave-ocean model. The coupled model successfully simulated the occurrence of CBs north of the near-surface-convergence area, which was formed by the confluent of the storm’s tangential winds with near-surface frictional spiral inflow from the surrounding region where the significant wave height was high. Simultaneously, the relatively fast translation and asymmetric tropical cyclone (TC) structure were maintained. Lower tropospheric horizontal moisture fluxes have enhanced around the convergence area, although SSC resulted in reduction of the air-sea latent heat fluxes within the storm’s inner core. Local occurrences of upward moisture fluxes associated with CBs increased the mid-toupper tropospheric condensational heating on the upstream side. This caused local increase in lower-tropospheric pressure gradient on the upstream side. This was favorable for pausing the decay of the simulated storm intensity even during the decay phase. Sensitivity experiments regarding the execution time of the coupled model showed that the vertical moisture fluxes and number of CBs could increase around the surface frictional convergence area ahead of the storm when the coupled model was not used. This suggests that the storm in mid-latitude could locally increase the maximum surface wind speed under favorable oceanic conditions. The number and distribution of CBs are indeed sensitive to oceanic conditions and are considered to affect the storm-track simulation and maximum surface wind speeds.","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"96 1","pages":"489-509"},"PeriodicalIF":2.4000,"publicationDate":"2018-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2151/JMSJ.2018-052","citationCount":"6","resultStr":"{\"title\":\"Relation of Convective Bursts to Changes in the Intensity of Typhoon Lionrock (2016) during the Decay Phase Simulated by an Atmosphere-Wave-Ocean Coupled Model\",\"authors\":\"A. Wada, R. Oyama\",\"doi\":\"10.2151/JMSJ.2018-052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typhoon Lionrock (2016) made landfall in the Pacific side of northern Japan. One of the intriguing events was consecutive deep convections (convective bursts, CBs) occurred before making landfall on 31 August. Lionrock paused the decay of the intensity of the storm, although sea surface cooling (SSC) was induced distinctly by Lionrock along the track. To examine the influence of CBs on changes in storm intensity during the decay phase, numerical simulations were conducted with a 3 km mesh coupled atmosphere-wave-ocean model. The coupled model successfully simulated the occurrence of CBs north of the near-surface-convergence area, which was formed by the confluent of the storm’s tangential winds with near-surface frictional spiral inflow from the surrounding region where the significant wave height was high. Simultaneously, the relatively fast translation and asymmetric tropical cyclone (TC) structure were maintained. Lower tropospheric horizontal moisture fluxes have enhanced around the convergence area, although SSC resulted in reduction of the air-sea latent heat fluxes within the storm’s inner core. Local occurrences of upward moisture fluxes associated with CBs increased the mid-toupper tropospheric condensational heating on the upstream side. This caused local increase in lower-tropospheric pressure gradient on the upstream side. This was favorable for pausing the decay of the simulated storm intensity even during the decay phase. Sensitivity experiments regarding the execution time of the coupled model showed that the vertical moisture fluxes and number of CBs could increase around the surface frictional convergence area ahead of the storm when the coupled model was not used. This suggests that the storm in mid-latitude could locally increase the maximum surface wind speed under favorable oceanic conditions. The number and distribution of CBs are indeed sensitive to oceanic conditions and are considered to affect the storm-track simulation and maximum surface wind speeds.\",\"PeriodicalId\":17476,\"journal\":{\"name\":\"Journal of the Meteorological Society of Japan\",\"volume\":\"96 1\",\"pages\":\"489-509\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2151/JMSJ.2018-052\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Meteorological Society of Japan\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/JMSJ.2018-052\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/JMSJ.2018-052","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Relation of Convective Bursts to Changes in the Intensity of Typhoon Lionrock (2016) during the Decay Phase Simulated by an Atmosphere-Wave-Ocean Coupled Model
Typhoon Lionrock (2016) made landfall in the Pacific side of northern Japan. One of the intriguing events was consecutive deep convections (convective bursts, CBs) occurred before making landfall on 31 August. Lionrock paused the decay of the intensity of the storm, although sea surface cooling (SSC) was induced distinctly by Lionrock along the track. To examine the influence of CBs on changes in storm intensity during the decay phase, numerical simulations were conducted with a 3 km mesh coupled atmosphere-wave-ocean model. The coupled model successfully simulated the occurrence of CBs north of the near-surface-convergence area, which was formed by the confluent of the storm’s tangential winds with near-surface frictional spiral inflow from the surrounding region where the significant wave height was high. Simultaneously, the relatively fast translation and asymmetric tropical cyclone (TC) structure were maintained. Lower tropospheric horizontal moisture fluxes have enhanced around the convergence area, although SSC resulted in reduction of the air-sea latent heat fluxes within the storm’s inner core. Local occurrences of upward moisture fluxes associated with CBs increased the mid-toupper tropospheric condensational heating on the upstream side. This caused local increase in lower-tropospheric pressure gradient on the upstream side. This was favorable for pausing the decay of the simulated storm intensity even during the decay phase. Sensitivity experiments regarding the execution time of the coupled model showed that the vertical moisture fluxes and number of CBs could increase around the surface frictional convergence area ahead of the storm when the coupled model was not used. This suggests that the storm in mid-latitude could locally increase the maximum surface wind speed under favorable oceanic conditions. The number and distribution of CBs are indeed sensitive to oceanic conditions and are considered to affect the storm-track simulation and maximum surface wind speeds.
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.