逆半群正交作用的极大序Groupoid和Galois对应

IF 0.6 4区 数学 Q3 MATHEMATICS
Wesley G. Lautenschlaeger, Thaísa Tamusiunas
{"title":"逆半群正交作用的极大序Groupoid和Galois对应","authors":"Wesley G. Lautenschlaeger,&nbsp;Thaísa Tamusiunas","doi":"10.1007/s10485-023-09742-z","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce maximal ordered groupoids and study some of their properties. Also, we use the Ehresmann–Schein–Nambooripad Theorem, which establishes a one-to-one correspondence between inverse semigroups and a class of ordered groupoids, to prove a Galois correspondence for the case of inverse semigroups acting orthogonally on commutative rings.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Ordered Groupoids and a Galois Correspondence for Inverse Semigroup Orthogonal Actions\",\"authors\":\"Wesley G. Lautenschlaeger,&nbsp;Thaísa Tamusiunas\",\"doi\":\"10.1007/s10485-023-09742-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce maximal ordered groupoids and study some of their properties. Also, we use the Ehresmann–Schein–Nambooripad Theorem, which establishes a one-to-one correspondence between inverse semigroups and a class of ordered groupoids, to prove a Galois correspondence for the case of inverse semigroups acting orthogonally on commutative rings.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09742-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09742-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

引入极大有序群类,研究了它们的一些性质。利用建立了逆半群与一类有序类群之间的一一对应关系的Ehresmann-Schein-Nambooripad定理,证明了逆半群正交作用于交换环上的伽罗瓦对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Ordered Groupoids and a Galois Correspondence for Inverse Semigroup Orthogonal Actions

We introduce maximal ordered groupoids and study some of their properties. Also, we use the Ehresmann–Schein–Nambooripad Theorem, which establishes a one-to-one correspondence between inverse semigroups and a class of ordered groupoids, to prove a Galois correspondence for the case of inverse semigroups acting orthogonally on commutative rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信