混合小度中$f$-理想和$f$–理想的密度

Pub Date : 2020-11-05 DOI:10.7146/math.scand.a-129244
HÀ Huytài, Graham Keiper, H. Mahmood, Jonathan L. O'Rourke
{"title":"混合小度中$f$-理想和$f$–理想的密度","authors":"HÀ Huytài, Graham Keiper, H. Mahmood, Jonathan L. O'Rourke","doi":"10.7146/math.scand.a-129244","DOIUrl":null,"url":null,"abstract":"A squarefree monomial ideal is called an $f$-ideal if its Stanley–Reisner and facet simplicial complexes have the same $f$-vector. We show that $f$-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to construct $f$-ideals generated in small degrees.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density of $f$-ideals and $f$-ideals in mixed small degrees\",\"authors\":\"HÀ Huytài, Graham Keiper, H. Mahmood, Jonathan L. O'Rourke\",\"doi\":\"10.7146/math.scand.a-129244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A squarefree monomial ideal is called an $f$-ideal if its Stanley–Reisner and facet simplicial complexes have the same $f$-vector. We show that $f$-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to construct $f$-ideals generated in small degrees.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-129244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-129244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个方折射单项式理想的Stanley–Reisner和facet单纯复形具有相同的$f$-向量,则称之为$f$-理想。我们证明了当变量的数量达到无穷大时,在固定度上生成的$f$-理想具有渐近密度零。我们还提供了新的算法来构造小度生成的$f$-理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Density of $f$-ideals and $f$-ideals in mixed small degrees
A squarefree monomial ideal is called an $f$-ideal if its Stanley–Reisner and facet simplicial complexes have the same $f$-vector. We show that $f$-ideals generated in a fixed degree have asymptotic density zero when the number of variables goes to infinity. We also provide novel algorithms to construct $f$-ideals generated in small degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信