关于平凡广义矩阵代数的JORDAN导子的一个注记

Pub Date : 2017-04-30 DOI:10.4134/CKMS.C160091
Yanbo Li, Chenyou Zheng
{"title":"关于平凡广义矩阵代数的JORDAN导子的一个注记","authors":"Yanbo Li, Chenyou Zheng","doi":"10.4134/CKMS.C160091","DOIUrl":null,"url":null,"abstract":". H. R. Ebrahimi Vishki et al. conjectured in [1], that if every Jordan higher derivation on a trivial generalized matrix algebra G = ( A,M,N,B ) is a higher derivation, then either M = 0 or N = 0. In this note, we will give a class of counter examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A NOTE ON JORDAN DERIVATIONS OF TRIVIAL GENERALIZED MATRIX ALGEBRAS\",\"authors\":\"Yanbo Li, Chenyou Zheng\",\"doi\":\"10.4134/CKMS.C160091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". H. R. Ebrahimi Vishki et al. conjectured in [1], that if every Jordan higher derivation on a trivial generalized matrix algebra G = ( A,M,N,B ) is a higher derivation, then either M = 0 or N = 0. In this note, we will give a class of counter examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C160091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C160091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

H.R.Ebrahimi Vishki等人在[1]中推测,如果平凡广义矩阵代数G=(a,M,N,B)上的每个Jordan高导数都是高导数,则M=0或N=0。在本说明中,我们将给出一类反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A NOTE ON JORDAN DERIVATIONS OF TRIVIAL GENERALIZED MATRIX ALGEBRAS
. H. R. Ebrahimi Vishki et al. conjectured in [1], that if every Jordan higher derivation on a trivial generalized matrix algebra G = ( A,M,N,B ) is a higher derivation, then either M = 0 or N = 0. In this note, we will give a class of counter examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信